research highlights

DO0I:10.1145/3747584

Equation-Directed

To view the accompanying Technical Perspective,
visit doi.acm.org/10.1145/3768311

Axiomatization of Lustre
Semantics to Enable Optimized

Code Validation

By Christophe Garion, Lélio Brun, Pierre-Loic Garoche, and Xavier Thirioux

ABSTRACT

Model-based design tools are often used to design safety-crit-
ical embedded software. Consequently, generating correct
code from such models is crucial. We tackle this challenge
on Lustre, a dataflow synchronous language that embodies
the concepts that base such tools. Instead of proving correct
a whole code generator, we turn an existing compiler into a
certifying compiler from Lustre to C, following a translation
validation approach.

We propose a solution that generates both C code and an
attached specification expressing a correctness result for the
generated and optionally optimized code. The specification
yields proof obligations that are discharged by external solv-
ers through the Frama-C platform.

1. INTRODUCTION
Model-based design tools, such as SCADE Suite or Simulink,
are widely used to design control software. They provide engi-
neers with an interface to build high-level applications based
on block diagrams and state machines, and with code gener-
ators that translate these models into sequential code. These
tools are based on synchronous dataflow languages such as
Lustre,’ which provides specific constructs to compose func-
tions over infinite streams of values, making it well suited for
designing control software targeting embedded systems. It is
used as a kernel language for SCADE Suite' and can encode a
subset of the discrete part of Simulink.®

Languages of the dataflow synchronous family usually
share well-studied formal semantics and compilation tech-
niques, allowing traceability, industrial certification, and ver-
ification. In the domain of safety-critical embedded software
design, these features are paramount to ensuring strong guar-
antees on the generated executable code. In particular, the ex-
istence of a well-founded mathematical model to express the
semantics of these languages makes them intrinsically suit-
able to the application of formal methods. While recent work
formalizes the semantics of a Lustre subset in a prototype
compiler’ whose correctness is verified once and for all in the
Coq proof assistant, we choose another approach to verified
compilation: translation validation.” In this approach, the

The original version of this paper was published in
ACM Trans. on Embedded Computing Systems 22, 58
(2023), 1-24.

preservation of the semantics between the source program
and the compiled one is checked for each run, after the com-
pilation. In this paper, we show how we modify the existing
Lustre-to-C compiler, LustreC, into a generator of both exe-
cutable code and associated specification. This specification
encodes a complete state/transition semantics of the source
Lustre code and states that the generated code complies with
this semantics, asserting the correctness of the generation
process. The specification is yet abstract enough to support
different levels of code optimizations. As an application, we
target the Frama-C platform” and its specification language
ACSL. Frama-C allows interfacing with external SMT solvers
to check that the generated C code complies with its specifi-
cation. Both the generated C code and its specification as pre/
post function contracts follow the node modular approach,*
which prevails in modern Lustre code generators such as
SCADE Suite. While some Lustre model-checking tools pro-
vide a node-modular axiomatization of Lustre semantics,
the produced predicates, typically built as a large conjunc-
tion of flow equations semantics formulas allowing to check
the correctness of the corresponding Lustre program, are
usually difficult to prove. In this paper, we propose a logical
encoding that relies on composition rather than conjunction.
This approach, while semantically equivalent, is shown to be
compatible with proof at code level. Our approach spares the
burden of proving correct a whole feature-rich compiler in an
interactive proof assistant by delegating the proof effort.

To summarize, with respect to the state of the art, our con-
tribution is: a node-modular, equation-driven, axiomatiza-
tion of Lustre semantics that is associated to each generated
instruction—to enable automatic validation—and is compat-
ible with several optimizations at code level.

The paper is organized as follows: Section 2 presents an
overview of related works. Section 3 describes the syntax,
semantics, and compilation process of the Lustre input lan-
guage. Section 4 explains how we axiomatize Lustre seman-
tics as a composition of equation-specific predicates and
define a certifying compiler by adding specification to the
generated code. Section 5 details optimization of generated
code and associated annotations. We present some experi-
mental results in section 6 and give concluding remarks and
perspectives in section 7.

2. RELATED WORK
There have been endeavors for building verified compilers

JANUARY 2026 | VOL.69 | NO.1 | COMMUNICATIONS OF THE ACM 93

https://dx.doi.org/10.1145/3747584
https://doi.acm.org/10.1145/3768311
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3747584&domain=pdf&date_stamp=2025-12-19

research highlights

for synchronous languages. The goal of the GeneAuto proj-
ect* was to develop a qualified code generator for a subset of
Simulink, with parts proved in Coq. Some preliminary work?
showed semantics preservation results for some passes of a
compiler for the Signal language.® To our knowledge, more
advanced solutions focus on Lustre* (give an end-to-end
correctness proof from an imperatively defined dataflow
semantics to the semantics of C), while the Vélus compiler’
uses a stream-based dataflow semantics and is built on the
verified C compiler CompCert.'® These solutions are proofs-
of-concept prototypes that treat a restricted subset of the in-
put languages. Our aim is different, since we want to extend
a feature-rich existing compiler with certifying abilities. The
main advantage is to sidestep the burden of having to re-
prove systematically the compiler when a variation is made in
the compilation process. Indeed, LustreC is rather large soft-
ware with about 40,000 lines of OCaml code, as it is designed
as an experimental playground for Lustre compilation, with
several additional features. Vélus is equally large with about
40,000 lines of Coq code, but the extracted code used to build
the actual compiler only amounts to about 1,500 lines of OC-
aml code. This comparison highlights the fact that the two
approaches actually aim for different goals. Vélus is an exper-
imental proof that shows it is possible to prove the correct-
ness of the compilation of Lustre in its simplest form. As the
main effort is on the formalization and proofs, the compila-
tion scheme is designed with the correctness proof in mind
and is kept as simple as possible. Our work seeks to demon-
strate using translation-validation techniques to verify the
correctness of an existing feature-rich compiler, without im-
pacting the compilation scheme in itself, which can remain
arbitrarily complex. In this paper, we nonetheless focus on a
subset close to the one treated by Vélus to assess the feasibil-
ity of our approach. The level of insurance in the generated
code verified using translation validation techniques or a
verified compiler is the same if the validation process, that is,
the validator, is itself formally verified. Notice it is not strictly
the case in this work: The trust is deferred onto the SMT solv-
ers. While a reasonable level of trust can be placed in them,
these solvers are not formally proved correct.

Translation validation® is an approach that was early ap-
plied to synchronous languages.*® Following this approach,
the semantics preservation is not proved once and for all by
proving a compiler, butverified a posteriorifor each run of the
compiler. Research in this domain about synchronous lan-
guages concentrates mainly on Signal*'**' and Simulink.'**
In particular, Cavalcanti et al.’® proposes a framework to
show refinement relations between Simulink discrete-time
block diagrams and SPARK/Ada implementations. These
works and our solution, which specifically targets compila-
tion from Lustre to C, are in the same vein. Finkbeiner et al.'®
follow essentially the same approach as ours: From monitors
written in the Lola stream-based synchronous specification
language, they generate Rust code annotated with specifica-
tion targeting the verification platform Viper. The authors
mainly focus on minimizing the memory footprint of gener-
ated monitors. Both Calvalcanti et al.'* and Finkbeiner et al.'®
handle arather simple inputlanguage, lacking advanced con-
trol structures such as clock sampling, resetting, and state

94 COMMUNICATIONS OF THE ACM | JANUARY 2026 | VOL.69 | NO.1

machines. Furthermore, it seems the proposed approaches
have been tested against a limited set of modest examples.
In contrast, we use modern Lustre as input, with all the afore-
mentioned features. As we also emphasize scalability, we ap-
plied our method to hundreds of use cases, including real-life
industrial examples.

While we restrict our approach to discrete-time synchro-
nous systems, there exist proposals combining several ap-
proaches to specifically tackle design and verification of hy-
brid systems. The MARS" framework provides an integrated
solution to design and verify hybrid Simulink models. Several
rewriting steps are used, and verification is performed by
simulation. VeriPhy’ is a toolchain focusing on hybrid cyber-
physical systems, built around several provers, that provides
a proof that properties are preserved from high-level models
to controller executables. VeriPhy is closer to verified compil-
ers: a chain of rewriting steps that are individually proven
correct in different provers.

3. THE LUSTRE LANGUAGE

We present the Lustre language with a simple counter mod-
ulo 4 example. The Lustre code is presented in Figure 1a. We
define a node called count that is a stream function without
input that outputs a boolean stream out. The output and lo-
cal streams are defined by equations whose order is insignifi-
cant. The local stream time and the output stream out are
defined using simple equations: Literal constants represent
constant streams, arithmetic operators operate point-wise,
and if/then/else is a multiplexer. The stream time is also
defined with the -> operator: It has the value 0 at the initial
instant and the value of the righthand-side expression other-
wise. The pre operator represents an uninitialized delay.

A dataflow representation of the execution is shown in
Figure 2. Each variable or expression is associated with its
corresponding stream. The columns give the values of the
streams indexed at each successive instant. We can clearly
describe the behavior of the pre operator: The stream as-
sociated with pre time is the stream associated with time
delayed by one instant, where L represents the uninitialized
value. On the right is represented a state/transition system ex-
ecution. Under this view, the node is considered as a system
with an internal state, whose evolution is dictated by transi-
tions. Successive transitions, labeled with the indexed output
values, encode the node equations. The state is a tree, where
nodes are Lustre node sub-instances and leaves are bindings
between state variables and their values.

3.1. Compiler architecture.
The standard Lustre compilation approach, described in
Biernacki et al.,’ consists of a single-loop modular scheme,
where a sequential step function is generated for each node
and where the program runs in an infinite loop that alter-
nates reading inputs—calculating a step of the system and
writing outputs. As it is adapted to both industrial certifica-
tion and formal reasoning, this approach is followed by sev-
eral implementations, such as SCADE Suite, Vélus, and other
academic compilers. This is also the one taken here.

The architecture of the compiler is displayed in Figure 3. In
the rest of the section, we describe the successive passes and

Figure 1. The Lustre code of the “counter” example and the corresponding machine code and C code.

#define count_set_reset (self)\
{ self -> reset = 1; }

void count clear reset (S *self) {
if (self-> reset) {
self-> reset 0;
_arrow_reset (self->a);

node count () returns (out: bool) machine count { }
var time: int; state ptime: int; }
let instance: a: _arrow;
time = 0 -> if (pre time = 3) void count_step(_Bool *out,
then 0 else pre time + 1; step () returns (out: bool) s *self) ({
out = (time = 2); var time: int; init, b: bool int time;
tel { _Bool init, b;
b := state (ptime) = 3; count_clear reset (self);
(a) Lustre code init := a.step(true, false); b = self->ptime == 3;
if (init) { init = _arrow_step(self->a);
time := 0 if (init)
} else { time = 0;
node count () returns (out: bool) if (b) { } else {
var time, ptime: int; init, b: bool; time := 0 if (b) {
let } else { time = 0;
init = true -> false; time := state(ptime) + 1 } else {
b = (ptime = 3); } time = self->ptime + 1;
time = if init then 0 else } }
if b then 0 else ptime + 1; out := time = 2; }
out = (time = 2); state (ptime) := time; *out = time == 2;
ptime = pre time; } self->ptime = time;
tel } }
(b) Normalized Lustre code (c) Machine code (d) C code

Figure 2. Two representations of the execution of the example.

Figure 4. Normalized Lustre abstract syntax.

init T F FF F F F T F e = expression
b LFFFFFF /\/\/\/\/\/\/\ ¢ constant
time 01 2 3 0 12 /W /W /W /W /W /W /W X variable
out FFTFFTFT & (e) operators
ptime 1 0 1 2 3 0 1 F F F e when C(x) sampling
ck = clock
° base clock
Figure 3. Architecture of the compiler. ck on C(x) sub-clock
(2) (3) 7 ce = control expression
— . — . e expression
/i\elaboratlon opt|m|zat|ons‘/f\‘ O[J;FLTIZatIOnS 8) if xthen ceelse ce conditional
parsmg - transle}ﬁén () generatk)n/ (n) merge x(C->ce) merge
Lustre tMachlnc‘ ‘ c ‘ . ion

GO > Spec — ., ACSL “ao_ eqfl.J o
scheduling normalization (8 (8) *=ace definition
(5) (%) x=apre(e) pre
N N X=.f(@ leveryx] instantiation

present a formal definition of the involved languages. We skip
the parsing, elaboration, and Lustre optimization steps; they
are irrelevant to this work. We do not detail normalization
and scheduling either, to simplify the presentation. We focus
on steps 6, 7, and 8. In particular, the light grey boxes Spec and
ACSL represent our main contribution. In addition to the regu-
lar generation of C code, we generate a specification encoding
the semantics of the input Lustre nodes, attached to translated
sequential code in the machine's intermediate language. This
specification is then translated into ACSL and attached to the
generated C code. This will be further developed in section 4.

3.2. Normalized lustre.

Normalization and scheduling are two source-to-source re-

writing steps used to enable generation of imperative code.
Normalization is used to identify and isolate state and state-
ful operations in dataflow nodes, by introducing auxiliary
variables and equations to split complex expressions into
simple sub-expressions. Scheduling is only a matter of re-or-
dering equations in preparation for the generation of sequen-
tial code. The ordering is based on a topological sort reflect-
ing syntactic dependencies between variables.*

The abstract syntax of normalized Lustre is shown in Fig-
ure 4. In the remaining, we write @ for the list a,--a . The ex
pression e when C(x) is a sampling operation that describes the
stream of e filtered at instants when the value of the variable x
is equal to the enumerated type variant C. Such sampled sub-
streams can be combined using the merge operator. These op-

JANUARY 2026 | VOL.69 | NO.1 | COMMUNICATIONS OF THE ACM 95

research highlights

erators highlight the notion of clock, that is, a boolean stream
used to indicate when a computation is performed or not. The
LustreC clock system follows the usual presentation from Co-
laco and Perez."” Succinctly, a clock is either the base clock (a
stream that is always true) or a sub-clock (a sampled boolean
stream). There are three forms of equations in normalized
Lustre, each annotated with such a clock. Control and state-
ful operations appear at the top level, respectively through
definition with a control expression and through pre and node
instantiation (optionally with modular reset represented by the
every keyword) equations. Modular reset” is a construct used
to restart a node instance on some condition x.

Arrows get a special treatment. An expression e; > e, is
transformed into if init then norm(e;) else norm(e,), where
init is defined by an additional equation init = true->false,
that is, the stream that is always false but at the very first in-
stant. In this equation, the arrow operation is considered as a
node instantiation.

The normalized Lustre code of the counter example is pre-
sented on Figure 1b. Several local variables are introduced:
ptime defines the previousvalue of time, init resultsfrom
the normalization of the arrow operation, and b denotes the
condition variable of the conditional.

3.3. Translation to machine code.

In the modular approach,’ scheduled normalized Lustre code
is translated into an intermediate imperative language with
object-oriented features. Each Lustre node is translated into
an object with an internal state and a method that executes
one cycle of computation. The sequential statements of this
step method are translated from the normalized and sched-
uled equations. The abstract syntax of the machine, our ver-
sion of the language, is shown in Figure 5, and the translation
function for expressions, control expressions, and equations
is directly taken from Biernacki et al.*

Figure 1c presents the machine code translated from the
example node. The variable pt ime, defined by a pre, is trans-
formed into a state variable (state keyword). The - opera-
tion is transformed into a call to the step method of the corre-
sponding sub-instance a (instance keyword; arrowisthe
name of the special machine thatimplements the behavior of
the - operation, considered as a special node instantiation).
The step method is generated with the same signature as the
node and comprises a sequence of statements directly trans-
lated from the Lustre equations.

Figure 5. Machine abstract syntax.

e = expression
¢ constant
X variable
state (x) state variable
& (?) operators

s = statement
KA sequence
x:=e assignment
state (x) :=e state assignment
if (e) {s} else {s} conditionals
case (e) {E)}
x:=i.step (?) step method call
i.reset() reset method call

96 COMMUNICATIONS OF THE ACM | JANUARY 2026 | VOL.69 | NO.1

3.4. Generation of C code.

The generation of C99-compliant C code is straightforward
and follows once more the scheme described in Biernacki et
al.* A structure is recursively generated for each machine, with
fields for each state variable and each instance. The structure
generated from the count example is shown below on the left,
with the structure generated for the special machine arrow.
struct arrow { Bool first; };

typedef struct count mem {
__ Bool _reset ;

int ptime ;
struct _arrow mem *a;
} s

Generated fields for sub-instances are pointers to handle
state update and separate compilation. A pointer to such a
structure holding the state is passed to functions generated
from machine methods.

We now explain the role of the field reset. In Figure 1d,
the set _ reset macrois used to notify a sub-instance that it
must be reset on the next cycle, by setting its _ reset flag. The
clear reset functioniscalled at the beginning of the step
function: If the instance has to be reset (i.e., the _reset flag
is true), then it actually reinitializes its arrow sub-instances
and notifies its other node sub-instances for reset. Note that
only one arrow sub-instance appears in this example.

The step method is transformed into a step function in a
direct way. Outputs are passed by pointers to handle multi-
ple outputs that are allowed in machine code. Each machine
statement is transformed into a C statement. State variables
and sub-instances are accessed through the self pointer to
the state structure.

4. SEMANTICS AXIOMATIZATION

The original semantics for Lustre is the classic denotational
dataflow semantics, where nodes are transformers of infinite
streams as illustrated on the left side of Figure 2. Whereas
on the right side, the state/transition operational semantics
obtained by the compilation process described in section
3 feels very concrete. Unfortunately, axiomatizing stream
transformers seems a rather difficult task, since every prop-
erty must finally be expressed as mere C code assertions. Un-
der the assumption it is possible, it is very likely that it would
be inadequate or put too much stress on first-order back-end
solvers used to discharge such assertions. Therefore, we
choose to axiomatize instead a relational state/transition se-
mantics, which lies in between. On the one hand, it is totally
independent of the code optimizations described in section
5. On the other hand, it exposes a notion of state that is not
part of the original semantics, yet state is simply made vis-
ible through normalization as explained in section 3.2, par-
tially bridging the gap between our relational semantics and
the dataflow one. We thus claim our semantics may perfectly
serve as a reference semantics for Lustre. This kind of se-
mantics also has the advantage of being easy to describe in a
typed first-order logic with arithmetic'” and is used internally
by the Kind 2 Lustre model checker,' as well as by the Stc in-
termediate language of the Vélus compiler.”

Figure 6. Node semantics as a predicate.

count_tr (S, x, out, S') A
dtime,
S'(ptime) = time
N\ out = (time = 2)
A init, b,
init = time =0
N (init \ b) = time =0
N (minit \ —b) =
time = S(ptime) + 1
N arrow_tr (Slal, init, S'[a])
B A b = (S(ptime) = 3)

The semantics of a node can be represented as a relation
that constrains input values, output values, a start state tree
S, and an end state tree S'. The relation for the previous ex-
ample is shown in Figure 6, where we write S(ptime) for ac-
cessing the value of the state variable ptime, and S[a] for
accessing the sub-tree corresponding to the state of the ar-
row node instance. The scheduling of the variables—here
b - init - time - out - S'—is used to build a more structured but
equivalent predicate. The innermost bottom-up evaluation of
the formula corresponds to the sequence of statements in the
machine code. Quantifiers are introduced as soon as possible
to tighten the scope of local variables. Our form (a) enables an
incremental description of the transition relation, statement
after statement, and therefore (b) allows verification tools
to focus only on a local assertion context around each state-
ment, as an efficient heuristic to discharge proof obligations
entailed by the specification.

4.1. Formalization of flow equations semantics.

Each equation in the node is expressed as a constraint: defini-
tion and pre equations as equality constraints between vari-
ables (existentially quantified if they are local) where state
variables are read in the start state S and written in the end
state §', and node instantiations as corresponding transition
relations constraining sub-states.

Figure 7 gives the formal state/transition semantics of
normalized Lustre in first-order logic. The given definitions
are parameterized by the states S and S’ corresponding to
the current node instance. The semantics functions resem-
ble the translation functions from Lustre to machine code.
A constant is evaluated to its value, a variable is mapped
to either its symbol or to its access path in the start state S
if it is a state variable, an operator application is recursively
evaluated, and when s are again erased. Control-expression
evaluation is parameterized by the variable being written and
defined recursively: Conditional and merge expressions are
turned into conjunctions of implications depending on the
Boolean evaluation of the variable condition, with simple log-
ical equations at their leaves (we write If a Then b Else c for (
a = b) A (~a = c)). Thelogical interpretation of an equation is
wrapped by the & function into a chain of implications that
reflects the sub-clocking relations of its clock annotation ck.
So, a definition equation is evaluated into an equation possi-
bly nested in an implication; a pre-equation into an equation
between the value of the state variable in the end state S"and
the evaluation of its left-hand side; and a node instantiation
into the evaluation of the corresponding transition relation

Figure 7. State/transition semantics of Lustre.

[e]l.=¢
bl = {5
[o (@1, = o (Tel)

if x is def. by a pre,
otherwise.
[e when C(x) (x)], = [e]2.

[el =& = [el.)

[if x then ce, elsece,]}, = If x Then [ce,]2, Else [ce,]2,

[merge (m})]]lg =A(x=0C) = [cel,
[x = . cel., = S*[cel)

[x = upre @I, =8*E' @ =[],

Ix = . f@1., = S*¢_tr(slil, [ell, x. S'Ti)
[[;: L.‘f(?) everyyl,, =38,

If y Then f i tr(S) Else S, = S[i]
A Str(S,, [[e]]L, x, "1i]))

S*(P)=

Sckon €W (P) = 8K((x =C= P)

instantiated on the sub-states S[i] and ST]. If there is a reset,
the existential intermediate state S, is reinitialized through
f_rst(Sy); otherwise, it is equal to the start sub-state S[i].

We define a relation f_tr; for each equation eq,, where n is
the total number of equations in the node and i € [1,n], that
builds the transition relation up to and including eq,. This
choice allows local reasoning relatively to each equation. We
perform an analysis on the normalized and scheduled Lustre
code that computes the set of live variables <, for each equa-
tion eq,. Z, is the set of assigned local or output variables so
far, after the evaluation of eq,, minus the set of local variables
not occurring in the remaining equations eq, ,,...,eq,. Last,
we existentially quantify variables that were live before but
not anymore after evaluation of eq,.

A partial transition relation f ¢r; is associated to each
equation, while the transition relation f ¢r describes the
whole node semantics.

1D 2 AT 4 — —>
ftr(S, L, 0, 8)23V,f tr, (S, I,L_, O_,S)
Alegq,l,,

frs,1,6,8) 2f¢r(s,1,0,5)

1 are the input variables, L and O respectlvely are lo local
and output varlables that belong in SZ We define V L, \L
ftr,=T,Z, = @L @andO 0.

4.2. Local annotations and function contracts.
Eventually the logical annotations attached to machine

statements are translated into predicates, contracts, and as-

JANUARY 2026 | VOL.69 | NO.1 | COMMUNICATIONS OF THE ACM 97

research highlights

sertions in ACSL (ANSI/ISO C Specification Language). It sup-
ports primitives that cover the low-level aspects of C and that
can be composed in a first-order logic. Through the Frama-C
WP plug-in that implements a weakest precondition calcu-
lus, contracts and assertions can be checked by external SMT
solvers, such as Alt-Ergo, CVC4 or Z3.

4.2.1. State representation.

To encode our transition relations, we first have to define a no-
tion of state. Since ACSL supports C structures, we use a “flat-
tened” version of the C structure that holds state as described
in section 3.4. Sub-state is no longer referred by pointer, but
directlyincluded as a sub-structure. The structure is declared
as ghost, meaning it can only be used in specification, not in
the actual code. Below is the ghost structure generated for the
count example.

/*@ ghost typedef struct count mem ghost {

int ptime ;
struct arrow mem _ghost a;
} gsi */

4.2.2. State correspondence.

We first assume that a standard initialization static analysis
has been successfully performed on the Lustre input code, as
itis common practice. It entails that every state variable m oc-
curs in the right-hand side of an arrow instance -, denoted
by Arrow(m), preventing that, at initial or reset time, its then
unspecified value would be accessed.

To ensure that the ghost state stays in correspondence with
the actual C state, we define a relation f~ pack for each ma-
chine £, which in turn depends upon local versions f~_pack,
holding after each statement s, = 7_ (eq,). We denote by In-
dex(m) (resp. by Index[7]) the index k such that s_assigns state
variable m (resp. calls the step function of node instance i).

Let us suppose a machine f with n translated equations.
We denote S, the ghost state after equation egq,. The C state
is represented by the self pointer. In broad outline, f pack
recursively asserts that state variables values at the leaves of
both ghost and actual trees are the same, provided protect-
ing arrows are not in their initial state and fis not to be reset.
Moreover, at locations after an arrow instance was called but
before its state variables are updated, correspondence ac-
counts for it by referring to this arrow at location 0, that is,
prior to its call. This is the role of the r index computation in
the following logical formulation, whose ACSL translation

Figure 8. Fine- and coarse-grained simulation schemes.

f_pack(S;, self)

(S T L, 0,1 S,
Sotri (S 1 1S £ pack(S, self)

self S; self S
! CCleqy); Gleq); !

CCleq): Glegy; e

! CCleq,); Gleq,); |

self---------------------- AN self---------------------- S

f_pack(S’, self)
fr(S, 10,8

fopack,,,(S,,, self)
ftr(S. L L O, S)

98 COMMUNICATIONS OF THE ACM | JANUARY 2026 | VOL.69 | NO.1

is not detailed. We write .%, resp. &, for the sub-instances
names, resp. state variables, of f.

f_pack,(S, self) &
N\ i_pack(S[i], self -> 1)

1EX
f
/\ —arrow_rst(S[Arrow(m)],)= S,(m) = self ->m
mes
f
where {’ =0 if Index [Arrow (m)] < k < Index(m)
r=k otherwise

f_pack(S, self) &
If self -> reset Then f rs«(S,) Else f_pack, (S, self)

We also have to keep track of the C state assignments in
our abstract state. To that purpose, we consider € (egq,) state-
ments as the ghost counterparts of & (eq,), the translation
of the Lustre eq, to C statements whenever they involve state
variables. Otherwise, € (eq,) is simply skip. We establish local
simulation relations at each egq,, used to compose a simulation
at stepfunctionlevel. Therelations constrain actual and ghost
states of the C program. Figure 8 describes the corresponding
simulation schemes. The scheme on the left represents a local
simulation between the actual state in self and the partial
ghost states S, and S, , after the execution of €& (eg,) on one
side and ¥ (eq,) on the other side: Memory correspondence is
preserved, and the partial transition relation progresses one
step further. The scheme on the right represents the combina-
tion of all such successive local simulations and is established
at the step function level, between the actual state in self and
the ghost start and end state S and S: Memory correspondence
is preserved, and the transition relation is established.

4.2.3. Reset function contract.

We add contract to the reset-related function described in
section 3.4, as shown below for the example.

/*@ requires count pack (* mem , self);
ensures count _pack5 (* mem , self); */
void count clear reset (S * self)
/*@ ghost (gS \ghost *mem) */ {

if (self -> reset) {

self -> reset = 0;

_arrow _ reset (self ->a);

}
}

The contract for count clear reset, appearing as
a special comment directly above function definition, states
that memory correspondence is preserved, using requires
and ensures keywords. While self is an actual parameter
of the function, mem is declared as an additional ghost pa-
rameter.

Contrary to the compilation scheme we use for the reset,
where actual recursive reinitialization is delayed until cor-
responding step calls on sub-states, we model abstract reini-
tialization in a direct “monolithic” way. To this end, we de-
fine a ghost function used to recursively reinitialize the ghost
state in one take, displayed below here our example.

/*@ ghost /@ ensures count reset (* mem); @/
void count reset ghost (gS \ghost *mem) {
_arrow _ reset ghost (mem ->a);
return ;

} */

The ghost function has a contract ensuring the state is in-
deed reinitialized, using an ACSL version of the f_rst predi-
cate mentioned in section 4.1.

4.2.4. Step function contract.

Partial transition-relations definitions are readily translated
into ACSL predicates as relations between two ghost states
corresponding respectively to S and S’. We then generate a
contract for the step function, and each annotation is trans-
lated into an ACSL assertion. Stateful operations are reflected
on the ghost state using ghost statements. The instrumented
code of the generated step function for the example is dis-
played below. We omit the definition of the generated ACSL
predicates for each count_tr;.

/*@ requires count pack (* mem , self);
ensures count pack (* mem , self);
ensures count tr

(\old (* mem), x, *out , *mem); */

void count step (_Bool *out , S * self)
/*@ ghost (gS \ghost *mem) */ {

int time ;
__Bool init , b;
count _clear reset (self)/*@ ghost (mem)*/;
//@ assert count _ tr0

(\at (* mem , Pre), x, * mem);
b = (self -> ptime == 3);
//@ assert count trl

(\at (* mem , Pre), x, b, * mem);
init = arrow _ step

(self ->a)/*@ ghost (& mem ->a) */;
//@ assert count _tr2

(\at (* mem , Pre), x, b, init ,
//e *mem);
if (init) { time = 0; } else {

if (b) { time = 0; } else {
time = self -> ptime + 1;
}

}

//@ assert count _tr3

(\at (* mem , Pre), x, time ,
//@ *mem);
*out = (time == 2);
//@ assert count _ tr4

(\at (* mem , Pre), x, time , *out ,
//@ *mem);
self -> ptime = time ;
//@ ghost mem -> ptime = time ;
//@ assert count _ tr5
(\at (* mem , Pre), x, *out ,

*mem);

//@

The contract requires that the state correspondence holds
before the call, and ensures it is preserved after. Moreover, it
states that the transition relation holds between the ghost
state before the call and the ghost state after, ensuring the
correctness result: the C code respects the semantics of the
node. The terms \old(*mem) in the contract and \at (*mem,
Pre) in the assertions both refer to the value of *mem before
the call of the function. In practice, we also generate asser-
tions enabling the establishment of the memory correspon-
dence at each intermediate program point.

5. OPTIMIZATIONS AND PROOFS

First, simply notifying reset at C code level instead of actually
performing it is already a supported optimization that does
not go unnoticed when running Lustre state machines. This
is also the way the SCADE suite handles node resetting.

We detail this in the following several other optimizations
that LustreC supports. Since these optimizations may replace
or erase variables, and even modify the machine statements
themselves, we must take care of the partial transition rela-
tions thatannotate them. Whereas f_tﬁ andf tr keeg tge same
definitions, the actual parameters L, of f tr; S,I,Ll.,Ol.,S’)
may change according to the optimization level. Also, moving
annotations around may yield capture problems. There are
several ways of handling those issues, for example, involving
existential quantification, but we choose to rely instead on
so-called ghost variables. Ghost variables are simply variables
that can only be used in the specification but not in the ac-
tual executable code. Hence, it means the semantics encod-
ing generated when producing unoptimized machine code is
unchanged by further optimizations. We describe the effects
of the different optimizations applied to the source Lustre toy
example presented in Figure 9a, which underlines the use of
user-defined enumerated types as clocks. Figure 9b is the gen-
erated machine code without any optimization. We represent
annotationsasspecial --@ £ _tr 1i(...) comments,where
the partial transition relations f ¢r; are defined as described
in the previous section (without the S and S’ parameters since
they are irrelevant to optimizations), and introduced assign-
ments to ghost variables are written --@ x := e.Figure 9c
presents the fully optimized machine code, and the four main
optimizations are presented in the following.

Conditionals fusion. Without further transformations, two
adjacent equations with the same sub-clock are transformed
into two adjacent conditional statements guarded on the
same condition. A typical optimization that Lustre compil-
ers following the modular approach implement is a rewriting
pass that fuses such groups of conditionals. Extending read-
ily,* implementation consists in merging adjacent condition-
al branches and regrouping their annotations. We can see in
Figure 9c the high number of generated conditionals fused
to produce better code, particularly on the conditionals con-
cerning the dvariable.

Variable inlining. Variable inlining occurs only when its
defining expression is atomic. Thus, substituting this expres-
sion for the variable does not duplicate complex expression
evaluation. Such substitutions are performed in code only.
The annotations are untouched, since the defining state-
ment is turned into a ghost one so that the inlined variable is

JANUARY 2026 | VOL.69 | NO.1 | COMMUNICATIONS OF THE ACM 99

research highlights

Figure 9. Lustre example with non-optimized and optimized translated machine code.

type enl
type en2

enum { On, Off };
enum { Up, Down };

node clocks (x: int) returns (y: int)

step (x:
var C:

{

int) returns (y: int)
enl; d: en2; bl,b2,b3,z: int; cl,c2: bool
cl := x >= 0;
--@ clocks_trl(x, cl)
if (c1) { d := Up } else { d := Down }
--@ clocks_tr2(x, d)
case (d) { Up: c2 :=x =0 }
--@ clock_tr3(x, d, c2)
case (d) {

Up: if (c2) { ¢ := Off } else { ¢ :=0On } }
--@ clocks_tr4(x, d, c)
case (d) { Up: case (c) { Off: b2 := 2 } }

11}

case (d) { Up: case (c) { On: bl :=

--@ clocks_tr6(x, d, ¢, bl, b2)

case (d) { Up: cas (c) { On: z := bl
Off: z := b2) }

:= b3 }

var c: enl clock; d: en2 clock;
bl,b2,b3,z: int; cl,c2: bool --@ clock_tr5(x, d, ¢, b2)

let

cl = (x >= 0);

d = 1f cl then Up else Down;

c2 = (x = 0) when Up(d)

c = if c2 then Off else On; --@ clocks_tr7(x, d, z)

b2 = 2 when Off (c) ; case (d) { Down: b3 := 3 }

bl = 1 when On(c); --@ clocks_tr8(x, d, b3, z)

z = merge ¢ (On -> bl) (Off -> b2); case (d) { Up: y := z

b3 = 3 when Down(d) ; Down: y

y = merge d (Up -> z) (Down -> b3); --@ clocks_tr9(x, y)

tel

(a) Lustre code

(b) Machine code

step (x:

{

--@ cl

int) returns (y: int)

=X >=0

--@ clocks_trl(x, cl1)
if (x >= 0) {

--@ clocks_tr2(x,
--@ clocks_tr3(x,
--@ clocks_tr4 (x,
--@ clocks_tr5
--@ clocks_tré
--@ clocks_tr7(x,
--@ clocks_tr8(x,
--@ clocks_tr9(x, y

--@ d := Up

[eNe]
~ N

¢}
o
e}
o
0

k
appppan
ﬁ Q

(
(
(
(
(
(
(
(

(c) Full optimization

keptalive in the specification. In Figure 9c, variablesbl, b2,
b3, c1, and c2 are inlined in the statements but turned into
ghost variables in the specification.

Variable recycling. We exploit variable reuse, applied only
between variables of the same type, for the sake of safety and
traceability. We leverage the results of liveness analysis and
clock calculus to reuse dead variables or clock-disjoint ones,
that is, variables that cannot simultaneously bear meaning-
ful values in the same time frame. As for variable inlining,
the variable replaced by a reused one is turned into a ghost
variable to keep its original definition in the specification.
However, because code after this optimization is no longer in
static single-assignment (SSA) form, capture problems may
arise when annotations refer to a variable that has been re-
used. To deal with such issues, we introduce for each variable
y,whichwill later be reused a ghost alias y’ assigned only once
with the original defining value of y. In subsequent annota-
tions, y'is substituted for y. On the example in Figure 9c, only
the variable z is replaced by y. The aforementioned capture
problem does not arise here and there is no need to introduce
aghostaliasy’

Enumerated type elimination. For a variable x belonging
in an enumerated type (for example, a clock), the compiler
merges conditional assignment of x to enumeration con-
stants with a conditional statement depending upon x. This
proves useful for clock-heavy programs obtained from Lustre
state machines. We again address potential capture prob-
lems by turning variable x into a ghost variable. We can see in
the code in Figure 9c that variables c and d have been elimi-
nated. As a result, switch cases are merged accordingly and
each variable is kept as a ghost in the specification.

100 COMMUNICATIONS OF THE ACM | JANUARY 2026 | VOL.69 | NO.1

6. EXPERIMENTAL RESULTS

To evaluate our compiler extension, we ran it against a set of
Lustre programs taken from the benchmarking suite of the
Kind tool,"” and from the test suite of the CoCoSim tool.®* We
used the default level of optimization of the compiler (02),
that is conditionals fusion and variable inlining. The tests
were run on a machine equipped with two Intel® Xeon®
processors E5-2670 v3 @ 2.30 GHz with 12 cores (24 threads)
each and 64 GB RAM. Frama-C / WP 26.1 is run with a global
timeout of 15360 s, using the Alt-Ergo 2.4.2, CVC4 1.8 and Z3
4.11.2 solvers in parallel, with a timeout per individual proof
obligation (PO) of 60 s.

Figure 10. Experiments report with 02 optimization level.

Generated Verified Verified (%)
Files 399 370 92.73
POs 231,471 231,210 99.89
104 4096
2048
10° + 1024
= 512
o 8
£ 107 256 &
=
128
10t 64
32
10°
10t 10? 10°
Size (loc)

Figure 10 presents a summary table and a scattered log-
log plot displaying the distribution of the verification time
of these test files against the size of the generated C code (ig-
noring ACSL specification): It roughly outlines a linear distri-
bution. The number of generated POs per file, displayed fol-
lowing the color scale, is also linear with regard to code size.
The conference version of this paper presents more detailed
results for the interested reader.?

7. DISCUSSION

We succeeded in automatically providing to each Lustre
source code an abstract operational semantics whose
preservation can be proved with high success rate at the
C target level of a Lustre compiler. We achieved our goal
with a translation validation technique, on a non trivial
subset of the Lustre language while enabling code optimi-
zations. To the best of our knowledge, the most aggressive
of our optimizations, such as clock disjoint time-frame
variable recycling, are not supported by the state-of-the-
art SCADE Suite compiler. The automated support for
such strong specification of C code also allowed us to un-
veil a bug in the original LustreC compiler optimization
strategies.

Building on this promising first proposal, our work
can be extended in several directions. First, we need to
investigate how to increase efficiency and robustness of
the solvers, by providing aggressive context pruning tech-
niques and guidance to these tools. We may for instance
reconsider our position detailed in section 4.2 about state
correspondence once the Frama-C tool supports local rea-
soning again. Also, even though using ghost variables in-
stead of existential quantification as explained in section 5
probably helps solvers by keeping the exact same code and
annotations structure whatever the optimization level, we
may try a different balance between these two approaches.
We also want to find a more suitable metric than program
size to sort out the several ways of improving our verifica-
tion approach, such as depth or size of the state tree.

Second, we could provide support for a more expres-
sive input language, including for instance structured
datatypes such as records and arrays. Until now, we also
assume that Lustre programs are well-formed, i.e. free of
run-time errors and uninitialized variables, otherwise
such programs simply cannot be proved to follow their
specification. We may investigate what remains of their
specification when well-formedness does not hold.

Finally, with regard to our relational semantics, we plan
to address its relationship with the canonical dataflow one
and envision initiating another approach based upon a for-
malization in a proof assistant such as Coq,complemented
with automated proof strategies, instead of putting heavy
stress on first-order solvers. We also plan to use it to prove
high-level functional contracts of Lustre programs.

8. ACKNOWLEDGMENTS

This work is supported by the Defense Innovation Agency
(AID) of the French Ministry of Defense (research project CLE-
DESCHAMPS N 2021 65 0070) and by JST CREST Grant Num-
ber JPMJCR21M3.

References
1. Amijad, H.M. et al. Translation Cham, (2015), 66-80.
validation of code generation from 13. Chen, M. et al. MARS: A toolchain for

the SIGNAL Data-Flow Language
to Verilog. In Proc. 2019 15" Intern.
Conf. on Semantics, Knowledge and
Grids, 153-160.

modelling, analysis and verification

of hybrid systems. Provably Correct

Systems, NASA Monographs in

Systems and Software Engineering, M.

2. Baudin, P. et al. The dogged pursuit of Hinchey, J.P. Bowen, and E.-R. Olderog,
bug-free C programs: The Frama-C eds. Springer, Cham, (2017), 39-58.
software analysis platform. Commun. 14. Colago, J.-L., Pagano, B., and Pouzet,
ACM 64,8 (July 2021), 56-68. M. SCADE 6: A formal language

3. Benveniste, A. and Le Guernic, P. for embedded critical software
Hybrid dynamical systems theory and development. In Proc. of the 2017
the Signal language. IEEE Trans. on Intern. Symp. on Theoretical Aspects
Automatic Control 35,5 (May 1990), of Software Engineering, 2017, 1-11.
535-546. 15. Colago, J.-L. and Pouzet, M. Clocks

4. Biernacki, D., Colago, J.-L., Hamon, G., as first class abstract types. In
and Pouzet, M. Clock-directed modular Embedded Software, Lecture Notes in
code generation for synchronous data- Computer Science, Springer (2003),
flow languages. In Proc. of the 2008 134-155.

ACM SIGPLAN-SIGBED Conf.on 16. Finkbeiner, B., Oswald, S., Passing,
Languages, Compilers, and Tools for N., and Schwenger, M. Verified Rust
Embedded Systems, ACM, 121-130. monitors for Lola specifications. In

5. Bohrer, B. et al. VeriPhy: Verified Proc. of the Runtime Verification:
controller executables from verified 20" Intern. Conf., Springer-Verlag,
cyber-physical system models. In (October 2020), 431-450.

Proc. of the 39" ACM SIGPLAN Conf. 17. Hagen, G. and Tinelli, C. Scaling up the
on Programming Language Design formal verification of Lustre programs
and Implementation, ACM (2018), with SMT-based techniques. In
617-630. Proceedings of the 2008 Intern. Conf.

6. Bourbouh, H. et al. CoCoSim, a code on Formal Methods in Computer-Aided
generation framework for control/ Design, IEEE Press, 1-9.
command applications: An overview 18. Leroy, X. Formal verification of a
of CoCoSim for multi-periodic discrete realistic compiler. Commun. ACM 52, 7
Simulink models. In Embedded Real 2009, 107-115.

Time Systems 2020. 19. Pnueli, A, Siegel, M., and Singerman,

7. Bourke, T, Brun, L., and Pouzet, E. Translation validation. Tools and
M. Mechanized semantics and Algorithms for the Construction and
verified compilation for a dataflow Analysis of Systems, Lecture Notes
synchronous language with reset. in Computer Science, B. Steffen, ed.
In Proc. of the 47" ACM SIGPLAN Springer (1998), 151-166.

Symp. on Principles of Programming 20. Pnueli, A., Strichman, O., and Siegel, M.
Languages 4, ACM (2020), 29. Translation validation for synchronous

8. Brun, L, Garion, C., Garoche, P.-L., languages. In Proc. of the 25" Intern.
and Thirioux, X. Equation-directed Colloquium on Automata, Languages
axiomatization of Lustre semantics and Programming, Springer-Verlag
to enable optimized code validation. (1998), 235-246.

ACM Trans. on Embedded Computing 21. Pnueli, A., Strichman, 0., and Siegel, M.
Systems 22, 5s (Sept. 2023), Translation validation: From SIGNAL
151:1-151:24. to C. Correct System Design: Recent

9. Caspi, P, Pilaud, D., Halbwachs, Insights and Advances, Lecture Notes
N., and Plaice, J. A. LUSTRE: A in Computer Science, E.-R. Olderog,
declarative language for programming E.-R. and Steffen, B, eds., Springer,
synchronous systems. In Proc. 14" (1999) 231-255.

Symp. on Principles of Programming 22. Ryabtsev, M. and Strichman, O.
Languages. ACM, POPL'87, 1987. Translation validation: From Simulink

10. Cavalcanti, A., Clayton, P, and to C. Computer-Aided Verification,
O'Halloran, C. From control law Lecture Notes in Computer Science, A.
diagrams to Ada via Circus. Formal Bouajjani and O. Maler, eds., Springer,
Aspects of Computing 23, 4 2011, Berlin, Heidelberg, (2009), 696-701.
465-512. 23. Shi, G. et al. A formally verified

11. Champion, A., Mebsout, A., Sticksel, transformation to unify multiple
C., and Tinelli, C. The Kind 2 model nested clocks for a Lustre-like
checker. In Proc. of the 28" Intern. language. Science China Information
Conf. on Computer Aided Verification Sciences 62,1 (2019), 12801.

9780, Chaudhuri, S. and Farzan, A. eds, 24, Toom, A. et al. Towards reliable
Springer (2016), 510-517. code generation with an open tool:

12. Chan Ngo, V,, Talpin, J.-P., and Evolutions of the Gene-Auto toolset.
Gautier, T. Translation validation for In ERTS2 2010, Embedded Real Time
synchronous data-flow specification Software & Systems Toulouse, France.
in the SIGNAL compiler. Formal 25. Yang, Z. et al. Towards a verified
Techniques for Distributed Objects, compiler prototype for the
Components, and Systems, Lecture synchronous language SIGNAL.
Notes in Computer Science, S. Graf Frontiers of Computer Science 10, 1
and M. Viswanathan, eds., Springer, (2016), 37-53.

Steven Christophe Garion, ISAE-
SUPAERQO, University of Toulouse,
Toulouse, France.

Pierre-Loic Garoche, ENAC LII,
Toulouse, France.

Xavier Thirioux, ISAE-SUPAERO,

Lélio Brun, National Institute of University of Toulouse, Toulouse, France.

Informatics, Tokyo, Japan.

This work is licensed under a Creative Commons
ov Attribution International 4.0 License.
© 2026 Copyright held by the owner/author(s).

JANUARY 2026 | VOL.69 | NO.1 | COMMUNICATIONS OF THE AcM 101

