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ABSTRACT
Model-based design tools are often used to design safety-crit-
ical embedded software. Consequently, generating correct 
code from such models is crucial. We tackle this challenge 
on Lustre, a dataflow synchronous language that embodies 
the concepts that base such tools. Instead of proving correct 
a whole code generator, we turn an existing compiler into a 
certifying compiler from Lustre to C, following a translation 
validation approach.

We propose a solution that generates both C code and an 
attached specification expressing a correctness result for the 
generated and optionally optimized code. The specification 
yields proof obligations that are discharged by external solv-
ers through the Frama-C platform.

1. INTRODUCTION
Model-based design tools, such as SCADE Suite or Simulink, 
are widely used to design control software. They provide engi-
neers with an interface to build high-level applications based 
on block diagrams and state machines, and with code gener-
ators that translate these models into sequential code. These 
tools are based on synchronous dataflow languages such as 
Lustre,9 which provides specific constructs to compose func-
tions over infinite streams of values, making it well suited for 
designing control software targeting embedded systems. It is 
used as a kernel language for SCADE Suite14 and can encode a 
subset of the discrete part of Simulink.6

Languages of the dataflow synchronous family usually 
share well-studied formal semantics and compilation tech-
niques, allowing traceability, industrial certification, and ver-
ification. In the domain of safety-critical embedded software 
design, these features are paramount to ensuring strong guar-
antees on the generated executable code. In particular, the ex-
istence of a well-founded mathematical model to express the 
semantics of these languages makes them intrinsically suit-
able to the application of formal methods. While recent work 
formalizes the semantics of a Lustre subset in a prototype 
compiler7 whose correctness is verified once and for all in the 
Coq proof assistant, we choose another approach to verified 
compilation: translation validation.19 In this approach, the 

preservation of the semantics between the source program 
and the compiled one is checked for each run, after the com-
pilation. In this paper, we show how we modify the existing 
Lustre-to-C compiler, LustreC, into a generator of both exe-
cutable code and associated specification. This specification 
encodes a complete state/transition semantics of the source 
Lustre code and states that the generated code complies with 
this semantics, asserting the correctness of the generation 
process. The specification is yet abstract enough to support 
different levels of code optimizations. As an application, we 
target the Frama-C platform2 and its specification language 
ACSL. Frama-C allows interfacing with external SMT solvers 
to check that the generated C code complies with its specifi-
cation. Both the generated C code and its specification as pre/
post function contracts follow the node modular approach,4 
which prevails in modern Lustre code generators such as 
SCADE Suite. While some Lustre model-checking tools11 pro-
vide a node-modular axiomatization of Lustre semantics, 
the produced predicates, typically built as a large conjunc-
tion of flow equations semantics formulas allowing to check 
the correctness of the corresponding Lustre program, are 
usually difficult to prove. In this paper, we propose a logical 
encoding that relies on composition rather than conjunction. 
This approach, while semantically equivalent, is shown to be 
compatible with proof at code level. Our approach spares the 
burden of proving correct a whole feature-rich compiler in an 
interactive proof assistant by delegating the proof effort.

To summarize, with respect to the state of the art, our con-
tribution is: a node-modular, equation-driven, axiomatiza-
tion of Lustre semantics that is associated to each generated 
instruction—to enable automatic validation—and is compat-
ible with several optimizations at code level.

The paper is organized as follows: Section 2 presents an 
overview of related works. Section 3 describes the syntax, 
semantics, and compilation process of the Lustre input lan-
guage. Section 4 explains how we axiomatize Lustre seman-
tics as a composition of equation-specific predicates and 
define a certifying compiler by adding specification to the 
generated code. Section 5 details optimization of generated 
code and associated annotations. We present some experi-
mental results in section 6 and give concluding remarks and 
perspectives in section 7.

2. RELATED WORK
There have been endeavors for building verified compilers 
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machines. Furthermore, it seems the proposed approaches 
have been tested against a limited set of modest examples. 
In contrast, we use modern Lustre as input, with all the afore-
mentioned features. As we also emphasize scalability, we ap-
plied our method to hundreds of use cases, including real-life 
industrial examples.

While we restrict our approach to discrete-time synchro-
nous systems, there exist proposals combining several ap-
proaches to specifically tackle design and verification of hy-
brid systems. The MARS13 framework provides an integrated 
solution to design and verify hybrid Simulink models. Several 
rewriting steps are used, and verification is performed by 
simulation. VeriPhy5 is a toolchain focusing on hybrid cyber-
physical systems, built around several provers, that provides 
a proof that properties are preserved from high-level models 
to controller executables. VeriPhy is closer to verified compil-
ers: a chain of rewriting steps that are individually proven 
correct in different provers.

3. THE LUSTRE LANGUAGE
We present the Lustre language with a simple counter mod-
ulo 4 example. The Lustre code is presented in Figure 1a. We 
define a node called count that is a stream function without 
input that outputs a boolean stream out. The output and lo-
cal streams are defined by equations whose order is insignifi-
cant. The local stream time and the output stream out are 
defined using simple equations: Literal constants represent 
constant streams, arithmetic operators operate point-wise, 
and if/then/else is a multiplexer. The stream time is also 
defined with the -> operator: It has the value 0 at the initial 
instant and the value of the righthand-side expression other-
wise. The pre operator represents an uninitialized delay.

A dataflow representation of the execution is shown in 
Figure 2. Each variable or expression is associated with its 
corresponding stream. The columns give the values of the 
streams indexed at each successive instant. We can clearly 
describe the behavior of the pre operator: The stream as-
sociated with pre time is the stream associated with time 
delayed by one instant, where ​⊥​ represents the uninitialized 
value. On the right is represented a state/transition system ex-
ecution. Under this view, the node is considered as a system 
with an internal state, whose evolution is dictated by transi-
tions. Successive transitions, labeled with the indexed output 
values, encode the node equations. The state is a tree, where 
nodes are Lustre node sub-instances and leaves are bindings 
between state variables and their values.

3.1. Compiler architecture. 
The standard Lustre compilation approach, described in 
Biernacki et al.,4 consists of a single-loop modular scheme, 
where a sequential step function is generated for each node 
and where the program runs in an infinite loop that alter-
nates reading inputs—calculating a step of the system and 
writing outputs. As it is adapted to both industrial certifica-
tion and formal reasoning, this approach is followed by sev-
eral implementations, such as SCADE Suite, Vélus, and other 
academic compilers. This is also the one taken here.

The architecture of the compiler is displayed in Figure 3. In 
the rest of the section, we describe the successive passes and 

for synchronous languages. The goal of the GeneAuto proj-
ect24 was to develop a qualified code generator for a subset of 
Simulink, with parts proved in Coq. Some preliminary work25 
showed semantics preservation results for some passes of a 
compiler for the Signal language.3 To our knowledge, more 
advanced solutions focus on Lustre23 (give an end-to-end 
correctness proof from an imperatively defined dataflow 
semantics to the semantics of C), while the Vélus compiler7 
uses a stream-based dataflow semantics and is built on the 
verified C compiler CompCert.18 These solutions are proofs-
of-concept prototypes that treat a restricted subset of the in-
put languages. Our aim is different, since we want to extend 
a feature-rich existing compiler with certifying abilities. The 
main advantage is to sidestep the burden of having to re-
prove systematically the compiler when a variation is made in 
the compilation process. Indeed, LustreC is rather large soft-
ware with about 40,000 lines of OCaml code, as it is designed 
as an experimental playground for Lustre compilation, with 
several additional features. Vélus is equally large with about 
40,000 lines of Coq code, but the extracted code used to build 
the actual compiler only amounts to about 1,500 lines of OC-
aml code. This comparison highlights the fact that the two 
approaches actually aim for different goals. Vélus is an exper-
imental proof that shows it is possible to prove the correct-
ness of the compilation of Lustre in its simplest form. As the 
main effort is on the formalization and proofs, the compila-
tion scheme is designed with the correctness proof in mind 
and is kept as simple as possible. Our work seeks to demon-
strate using translation-validation techniques to verify the 
correctness of an existing feature-rich compiler, without im-
pacting the compilation scheme in itself, which can remain 
arbitrarily complex. In this paper, we nonetheless focus on a 
subset close to the one treated by Vélus to assess the feasibil-
ity of our approach. The level of insurance in the generated 
code verified using translation validation techniques or a 
verified compiler is the same if the validation process, that is,  
the validator, is itself formally verified. Notice it is not strictly 
the case in this work: The trust is deferred onto the SMT solv-
ers. While a reasonable level of trust can be placed in them, 
these solvers are not formally proved correct.

Translation validation19 is an approach that was early ap-
plied to synchronous languages.20 Following this approach, 
the semantics preservation is not proved once and for all by 
proving a compiler, but verified a posteriori for each run of the 
compiler. Research in this domain about synchronous lan-
guages concentrates mainly on Signal1,12,21 and Simulink.10,22 
In particular, Cavalcanti et al.10 proposes a framework to 
show refinement relations between Simulink discrete-time 
block diagrams and SPARK/Ada implementations. These 
works and our solution, which specifically targets compila-
tion from Lustre to C, are in the same vein. Finkbeiner et al.16 
follow essentially the same approach as ours: From monitors 
written in the Lola stream-based synchronous specification 
language, they generate Rust code annotated with specifica-
tion targeting the verification platform Viper. The authors 
mainly focus on minimizing the memory footprint of gener-
ated monitors. Both Calvalcanti et al.10 and Finkbeiner et al.16 
handle a rather simple input language, lacking advanced con-
trol structures such as clock sampling, resetting, and state 
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present a formal definition of the involved languages. We skip 
the parsing, elaboration, and Lustre optimization steps; they 
are irrelevant to this work. We do not detail normalization 
and scheduling either, to simplify the presentation. We focus 
on steps 6, 7, and 8. In particular, the light grey boxes Spec and 
ACSL represent our main contribution. In addition to the regu-
lar generation of C code, we generate a specification encoding 
the semantics of the input Lustre nodes, attached to translated 
sequential code in the machine's intermediate language. This 
specification is then translated into ACSL and attached to the 
generated C code. This will be further developed in section 4.

3.2. Normalized lustre. 
Normalization and scheduling are two source-to-source re-

writing steps used to enable generation of imperative code. 
Normalization is used to identify and isolate state and state-
ful operations in dataflow nodes, by introducing auxiliary 
variables and equations to split complex expressions into 
simple sub-expressions. Scheduling is only a matter of re-or-
dering equations in preparation for the generation of sequen-
tial code. The ordering is based on a topological sort reflect-
ing syntactic dependencies between variables.4

The abstract syntax of normalized Lustre is shown in Fig-
ure 4. In the remaining, we write ​​ → a ​​for the list ​​a​0​​⋯​a​n​​​. The ex-
pression e when C(x) is a sampling operation that describes the 
stream of ​e​ filtered at instants when the value of the variable ​x​ 
is equal to the enumerated type variant ​C​. Such sampled sub-
streams can be combined using the merge operator. These op-

Figure 1. The Lustre code of the “counter” example and the corresponding machine code and C code.

node count () returns (out: bool)
var time: int;
let
 time = 0 -> if (pre time = 3)
  then 0 else pre time + 1;
 out = (time = 2);
tel

(a) Lustre code

node count () returns (out: bool)
var time, ptime: int; init, b: bool;
let
 init = true -> false;
 b = (ptime = 3);
 time = if init then 0 else
  if b then 0 else ptime + 1;
 out = (time = 2);
 ptime = pre time;
tel

(b) Normalized Lustre code

machine count {
 state ptime: int;
 instance: a: _arrow;

 step() returns (out: bool)
 var time: int; init, b: bool
 {
  b := state (ptime) = 3;
  init := a.step(true, false);
  if (init) {
   time := 0
  } else {
   if (b) {
    time := 0
   } else {
    time := state(ptime) + 1
   }
  }
  out := time = 2;
  state(ptime) := time;
 }
}

(c) Machine code

#define count_set_reset(self)\
 { self ->_reset = 1; }

void count_clear_reset(S *self) {
 if (self->_reset) {
  self->_reset = 0;
  _arrow_reset(self->a);
 }
}

void count_step(_Bool *out,
      S *self) {
 int time;
 _Bool init, b;
 count_clear_reset(self);
 b = self->ptime == 3;
 init = _arrow_step(self->a);
 if (init) {
  time = 0;
 } else {
  if (b) {
   time = 0;
  } else {
   time = self->ptime + 1;
  }
 }
 *out = time == 2;
 self->ptime = time;
}

(d) C code

Figure 2. Two representations of the execution of the example.

init T F F F F F F …
b ┴ F F F F F F …
time 0 1 2 3 0 1 2 …
out F F T F F F T …
ptime ┴ 0 1 2 3 0 1 …

┴

T F F F F F F

F F T F F F T
…

0 1 0 12 3

Figure 3. Architecture of the compiler.
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Figure 4. Normalized Lustre abstract syntax.

e
│ c
│ x
│ ◇ (e )
│ e when C(x)

ck
│ •
│ ck on C(x)

:=

:=

ce
│ e
│ if x then ce else ce 
│ merge x(C-> ce)

:=

eq
│ x = ck ce
│ x = ck pre (e)
│ x = ck f (e)  [every x]

:=

expression
constant
variable

operators
sampling

clock
base clock
sub-clock

control expression
expression
conditional

merge

equation
definition

pre
instantiation
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erators highlight the notion of clock, that is, a boolean stream 
used to indicate when a computation is performed or not. The 
LustreC clock system follows the usual presentation from Co-
laço and Perez.15 Succinctly, a clock is either the base clock (a 
stream that is always true) or a sub-clock (a sampled boolean 
stream). There are three forms of equations in normalized 
Lustre, each annotated with such a clock. Control and state-
ful operations appear at the top level, respectively through 
definition with a control expression and through pre and node 
instantiation (optionally with modular reset represented by the 
every keyword) equations. Modular reset7 is a construct used 
to restart a node instance on some condition ​x​.

Arrows get a special treatment. An expression e1 -> e2 is 
transformed into if init then norm(e1) else norm(e2), where ​
init​ is defined by an additional equation init = true->false, 
that is, the stream that is always false but at the very first in-
stant. In this equation, the arrow operation is considered as a 
node instantiation.

The normalized Lustre code of the counter example is pre-
sented on Figure 1b. Several local variables are introduced: 
ptime defines the previous value of time, init results from 
the normalization of the arrow operation, and b denotes the 
condition variable of the conditional.

3.3. Translation to machine code. 
In the modular approach,4 scheduled normalized Lustre code 
is translated into an intermediate imperative language with 
object-oriented features. Each Lustre node is translated into 
an object with an internal state and a method that executes 
one cycle of computation. The sequential statements of this 
step method are translated from the normalized and sched-
uled equations. The abstract syntax of the machine, our ver-
sion of the language, is shown in Figure 5, and the translation 
function for expressions, control expressions, and equations 
is directly taken from Biernacki et al.4

Figure 1c presents the machine code translated from the 
example node. The variable ptime, defined by a pre, is trans-
formed into a state variable (state keyword). The -> opera-
tion is transformed into a call to the step method of the corre-
sponding sub-instance a (instance keyword; _ arrow is the 
name of the special machine that implements the behavior of 
the -> operation, considered as a special node instantiation). 
The step method is generated with the same signature as the 
node and comprises a sequence of statements directly trans-
lated from the Lustre equations.

3.4. Generation of C code. 
The generation of C99-compliant C code is straightforward 
and follows once more the scheme described in Biernacki et 
al.4 A structure is recursively generated for each machine, with 
fields for each state variable and each instance. The structure 
generated from the count example is shown below on the left, 
with the structure generated for the special machine _arrow.
struct _ arrow { _ Bool _ first; };

typedef struct count _ mem {
_ Bool _ reset ;
int ptime ;
struct _ arrow _ mem *a;
} S;

Generated fields for sub-instances are pointers to handle 
state update and separate compilation. A pointer to such a 
structure holding the state is passed to functions generated 
from machine methods.

We now explain the role of the field _ reset. In Figure 1d, 
the set _ reset macro is used to notify a sub-instance that it 
must be reset on the next cycle, by setting its _ reset flag. The 
clear _ reset function is called at the beginning of the step 
function: If the instance has to be reset (i.e., the _ reset flag 
is true), then it actually reinitializes its arrow sub-instances 
and notifies its other node sub-instances for reset. Note that 
only one arrow sub-instance appears in this example.

The step method is transformed into a step function in a 
direct way. Outputs are passed by pointers to handle multi-
ple outputs that are allowed in machine code. Each machine 
statement is transformed into a C statement. State variables 
and sub-instances are accessed through the self pointer to 
the state structure.

4. SEMANTICS AXIOMATIZATION
The original semantics for Lustre is the classic denotational 
dataflow semantics, where nodes are transformers of infinite 
streams as illustrated on the left side of Figure 2. Whereas 
on the right side, the state/transition operational semantics 
obtained by the compilation process described in section 
3 feels very concrete. Unfortunately, axiomatizing stream 
transformers seems a rather difficult task, since every prop-
erty must finally be expressed as mere C code assertions. Un-
der the assumption it is possible, it is very likely that it would 
be inadequate or put too much stress on first-order back-end 
solvers used to discharge such assertions. Therefore, we 
choose to axiomatize instead a relational state/transition se-
mantics, which lies in between. On the one hand, it is totally 
independent of the code optimizations described in section 
5. On the other hand, it exposes a notion of state that is not 
part of the original semantics, yet state is simply made vis-
ible through normalization as explained in section 3.2, par-
tially bridging the gap between our relational semantics and 
the dataflow one. We thus claim our semantics may perfectly 
serve as a reference semantics for Lustre. This kind of se-
mantics also has the advantage of being easy to describe in a 
typed first-order logic with arithmetic17 and is used internally 
by the Kind 2 Lustre model checker,11 as well as by the Stc in-
termediate language of the Vélus compiler.7

Figure 5. Machine abstract syntax.

e
│ c
│ x
│ state (x)
│ ◇ (e )

s
│ s; s
│ x := e
│ state (x) := e
│ if (e) {s} else {s}
│ case (e) {C:s}
│ x := i.step (e)
│ i.reset()

:=

:=

expression
constant
variable

state variable
operators

statement
sequence

assignment
state assignment

conditionals

step method call
reset method call
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instantiated on the sub-states ​​S​[​​i​]​​​​ and ​​​S ′ ​​[​​i​]​​​​. If there is a reset, 
the existential intermediate state ​​S​r​​​ is reinitialized through 
f_rst(Sr); otherwise, it is equal to the start sub-state ​​S​[​​i​]​​​​.

We define a relation f_tri for each equation ​e ​q​i​​​, where ​n​ is 
the total number of equations in the node and ​​i ∈ ​[​​1, n​]​​​​, that 
builds the transition relation up to and including ​e ​q​i​​​. This 
choice allows local reasoning relatively to each equation. We 
perform an analysis on the normalized and scheduled Lustre 
code that computes the set of live variables ​​ℒ​i​​​ for each equa-
tion ​e ​q​i​​​. ​​ℒ​i​​​ is the set of assigned local or output variables so 
far, after the evaluation of ​e ​q​i​​​, minus the set of local variables 
not occurring in the remaining equations ​e ​q​i+1​​, ... , e ​q​n​​​. Last, 
we existentially quantify variables that were live before but 
not anymore after evaluation of ​e ​q​i​​​.

A partial transition relation f_tri is associated to each 
equation, while the transition relation f_tr describes the 
whole node semantics.

​​

f _ t ​r​i​​(S,  ​ 
→
 I​, ​ 
→

 ​L​i​​​,  ​ 
→

 ​O​i​​​,  ​S ′ ​ ) ≜ ∃ ​ 
→

 ​V​i​​​, f _ t ​r​i−1​​(S,  ​ 
→
 I​, ​ 
⟶

 ​L​i−1​​​, ​ 
⟶

   ​O​i−1​​​,  ​S ′ ​)
​                                            ∧⟦e ​q​i​​ ⟧ ​​eq​​​   

f _ tr(S,  ​ 
→
 I​, ​ 
→

 O​,  ​S ′ ​ )         ≜ f _ t ​r​n​​(​S​r​​, ​ 
→
 I​, ​ 
→

 O​, ​S ′ ​)

   ​
​

​​ 
→
 I​​ are the input variables, ​​ 

→
 ​L​i​​​​ and ​​ 

→
 ​O​i​​​​ respectively are local 

and output variables that belong in ​​ℒ​i​​​. We define ​​ 
→

 ​V​i​​​ = ​ 
⟶

 ​L​i−1​​​\ ​ 
→

 ​L​i​​​​, ​
f _ t r​0​​ = ⊤​, ​​ℒ​0​​ = ∅​, ​​ 

→
 ​L​n​​​ = ∅​, and ​​ 

→
 ​O​n​​​ = ​ 

→
 O​​.

4.2. Local annotations and function contracts. 
Eventually the logical annotations attached to machine 
statements are translated into predicates, contracts, and as-

The semantics of a node can be represented as a relation 
that constrains input values, output values, a start state tree ​
S​, and an end state tree ​​S ′ ​​. The relation for the previous ex-
ample is shown in Figure 6, where we write S(ptime) for ac-
cessing the value of the state variable ptime, and S[a] for 
accessing the sub-tree corresponding to the state of the ar-
row node instance. The scheduling of the variables—here ​
b · init · time · out · ​S ′ ​​—is used to build a more structured but 
equivalent predicate. The innermost bottom-up evaluation of 
the formula corresponds to the sequence of statements in the 
machine code. Quantifiers are introduced as soon as possible 
to tighten the scope of local variables. Our form (a) enables an 
incremental description of the transition relation, statement 
after statement, and therefore (b) allows verification tools 
to focus only on a local assertion context around each state-
ment, as an efficient heuristic to discharge proof obligations 
entailed by the specification.

4.1. Formalization of flow equations semantics. 
Each equation in the node is expressed as a constraint: defini-
tion and pre equations as equality constraints between vari-
ables (existentially quantified if they are local) where state 
variables are read in the start state ​S​ and written in the end 
state ​​S ′ ​​, and node instantiations as corresponding transition 
relations constraining sub-states.

Figure 7 gives the formal state/transition semantics of 
normalized Lustre in first-order logic. The given definitions 
are parameterized by the states ​S​ and ​​S ′ ​​ corresponding to 
the current node instance. The semantics functions resem-
ble the translation functions from Lustre to machine code. 
A constant is evaluated to its value, a variable is mapped 
to either its symbol or to its access path in the start state ​S​ 
if it is a state variable, an operator application is recursively 
evaluated, and when s are again erased. Control-expression 
evaluation is parameterized by the variable being written and 
defined recursively: Conditional and merge expressions are 
turned into conjunctions of implications depending on the 
Boolean evaluation of the variable condition, with simple log-
ical equations at their leaves (we write If a Then b Else c for ​​​(​​
a ⇒ b​)​​ ∧ ​(​​¬a ⇒ c​)​​​​). The logical interpretation of an equation is 
wrapped by the ​​𝒮​​ ck​​ function into a chain of implications that 
reflects the sub-clocking relations of its clock annotation ​ck​. 
So, a definition equation is evaluated into an equation possi-
bly nested in an implication; a pre-equation into an equation 
between the value of the state variable in the end state ​​S ′ ​​ and 
the evaluation of its left-hand side; and a node instantiation 
into the evaluation of the corresponding transition relation 

Figure 6. Node semantics as a predicate.

count_tr (S, x, out, S′) ≜
 ∃time,
   S′(ptime) = time
  ⋀ out = (time = 2)
  ⋀ ∃init, b,
     init ⇒ time = 0
    ⋀ (¬init ⋀ b) ⇒ time = 0
    ⋀ (¬init ⋀ ¬b) ⇒
     time = S(ptime) + 1
    ⋀ arrow_tr (S[a], init, S′[a])
    ⋀ b = (S(ptime) = 3)

Figure 7. State/transition semantics of Lustre.

⟦e when C(x) (x)⟧e = ⟦e⟧ y
ce

⟦e⟧ y
ce  = (y = ⟦e⟧e)

⟦x = ck ce⟧ eq  = � ck(⟦ce⟧x
ce)

� ck on  C(x) (P)  = � ck((x  = C ⇒  P)

�• (P) = P 

⟦x = ck pre (e)⟧ eq  = � ck(S′(x) = ⟦e⟧e)

⟦if x then ce1 else ce2⟧ y
ce  = If x  Then ⟦ce1⟧ y

ce Else ⟦ce2⟧ y
ce

⟦◇ (e)⟧e = ◇ (⟦e⟧e)

⟦merge (C  -> ce)⟧ y
ce  = ⋀ (x = C ) ⇒ ⟦ce⟧ y

ce

⟦c⟧e = c
if x is def. by a pre,
otherwise.

⟦x⟧e = c S(x)
x{

⟦c⟧e = c
if x is def. by a pre,
otherwise.

⟦x⟧e = c S(x)
x{

 

⟦x = ck f (e) every y⟧ eq  = ∃Sr ,

⟦x = ck f (e)⟧ eq  = � ck(f_tr(S[i], ⟦e⟧e, x, S′[i]))

� ck
If y  Then f_tr(Sr) Else Sr = S[i]
⋀ f_tr(Sr, ⟦e⟧e,  x, S′[i])( )
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is not detailed. We write ​​ℐ​f ​​​, resp. ​​𝒮​f ​​​, for the sub-instances 
names, resp. state variables, of f.

f_ packk(S, self) ≜
 ⋀ i_ pack(S[i], self -> i)

 ⋀ ¬arrow_rst(S[Arrow(m)]r) ⇒ Sk(m) = self -> m

f_ pack (S, self) ≜
 If self -> _reset Then f_rst(Sn) Else f_ packn (S, self)

where

i∈xf

m∈Sf

r = 0
r = k{ if Index [Arrow (m)] ≤ k < Index(m)

otherwise

We also have to keep track of the C state assignments in 
our abstract state. To that purpose, we consider ​​𝒢​(​​e ​q​i​​​)​​​​ state-
ments as the ghost counterparts of ​​𝒞𝒞​(​​e ​q​i​​​)​​​​, the translation 
of the Lustre ​e ​q​i​​​ to C statements whenever they involve state 
variables. Otherwise, ​​𝒢​(​​e ​q​i​​​)​​​​ is simply skip. We establish local 
simulation relations at each ​e ​q​i​​​, used to compose a simulation 
at step function level. The relations constrain actual and ghost 
states of the C program. Figure 8 describes the corresponding 
simulation schemes. The scheme on the left represents a local 
simulation between the actual state in self and the partial 
ghost states ​​S​i​​​ and ​​S​i+1​​​, after the execution of ​​𝒞𝒞​(​​e ​q​i​​​)​​​​ on one 
side and ​​𝒢​(​​e ​q​i​​​)​​​​ on the other side: Memory correspondence is 
preserved, and the partial transition relation progresses one 
step further. The scheme on the right represents the combina-
tion of all such successive local simulations and is established 
at the step function level, between the actual state in self and 
the ghost start and end state ​S​ and ​​S ′ ​​: Memory correspondence 
is preserved, and the transition relation is established.

4.2.3. Reset function contract. 

We add contract to the reset-related function described in 
section 3.4, as shown below for the example.

/*@ requires count _ pack (* mem , self );
     ensures count _ pack5 (* mem , self ); */
void count _ clear _ reset (S * self )
         /*@ ghost (gS \ghost *mem) */ {
  if (self -> _ reset ) {
   self -> _ reset = 0;
   _ arrow _ reset (self ->a);
  }
}

The contract for count _ clear _ reset, appearing as 
a special comment directly above function definition, states 
that memory correspondence is preserved, using requires 
and ensures keywords. While self is an actual parameter 
of the function, mem is declared as an additional ghost pa-
rameter.

Contrary to the compilation scheme we use for the reset, 
where actual recursive reinitialization is delayed until cor-
responding step calls on sub-states, we model abstract reini-
tialization in a direct “monolithic” way. To this end, we de-
fine a ghost function used to recursively reinitialize the ghost 
state in one take, displayed below here our example.

sertions in ACSL (ANSI/ISO C Specification Language). It sup-
ports primitives that cover the low-level aspects of C and that 
can be composed in a first-order logic. Through the Frama-C 
WP plug-in that implements a weakest precondition calcu-
lus, contracts and assertions can be checked by external SMT 
solvers, such as Alt-Ergo, CVC4 or Z3.

4.2.1. State representation. 
To encode our transition relations, we first have to define a no-
tion of state. Since ACSL supports C structures, we use a “flat-
tened” version of the C structure that holds state as described 
in section 3.4. Sub-state is no longer referred by pointer, but 
directly included as a sub-structure. The structure is declared 
as ghost, meaning it can only be used in specification, not in 
the actual code. Below is the ghost structure generated for the 
count example.

/*@ ghost typedef struct count _ mem _ ghost { 
	 int ptime ; 
	 struct _ arrow _ mem _ ghost a;
	 } gS;                          */

4.2.2.  State correspondence. 
We first assume that a standard initialization static analysis 
has been successfully performed on the Lustre input code, as 
it is common practice. It entails that every state variable ​m​ oc-
curs in the right-hand side of an arrow instance ->, denoted 
by ​​Arrow​(​​m​)​​​​, preventing that, at initial or reset time, its then 
unspecified value would be accessed.

To ensure that the ghost state stays in correspondence with 
the actual C state, we define a relation f_pack for each ma-
chine f, which in turn depends upon local versions f_packk, 
holding after each statement ​​s​k​​ = ​𝒯​eq​​​​(​​e ​q​k​​​)​​​​. We denote by ​​In-
dex​(​​m​)​​​​ (resp. by ​​Index​[​​i​]​​​​) the index ​k​ such that ​​s​k​​​ assigns state 
variable ​m​ (resp. calls the step function of node instance ​i​).

Let us suppose a machine f with ​n​ translated equations. 
We denote ​​S​k​​​ the ghost state after equation ​e ​q​k​​​. The C state 
is represented by the self pointer. In broad outline, f_pack 
recursively asserts that state variables values at the leaves of 
both ghost and actual trees are the same, provided protect-
ing arrows are not in their initial state and ​f​ is not to be reset. 
Moreover, at locations after an arrow instance was called but 
before its state variables are updated, correspondence ac-
counts for it by referring to this arrow at location 0, that is, 
prior to its call. This is the role of the ​r​ index computation in 
the following logical formulation, whose ACSL translation 

Figure 8. Fine- and coarse-grained simulation schemes.

f_ packi(Si, self)

f_ packi+1(Si+1, self)

self Si

��(eqi); �(eqi);

Si+1self

f_ tri–1(Si–1, I, Li–1, Oi–1, Si)

f_ tri(Si, I, Li, Oi, Si)

f_ packi(S, self)

f_ pack (S′, self)

self S
��(eqi);

��(eqn);

�(eqi);

�(eqn);
S′self

f_ tr (S, I, O, S′)

… …
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/*@ ghost /@ ensures count _ reset (* mem ); @/
     void count _ reset _ ghost (gS \ghost *mem ) {
       _ arrow _ reset _ ghost (mem ->a);
       return ;
     }                                          */

The ghost function has a contract ensuring the state is in-
deed reinitialized, using an ACSL version of the f_rst predi-
cate mentioned in section 4.1.

4.2.4. Step function contract. 
Partial transition-relations definitions are readily translated 
into ACSL predicates as relations between two ghost states 
corresponding respectively to ​S​ and ​​S ′ ​​. We then generate a 
contract for the step function, and each annotation is trans-
lated into an ACSL assertion. Stateful operations are reflected 
on the ghost state using ghost statements. The instrumented 
code of the generated step function for the example is dis-
played below. We omit the definition of the generated ACSL 
predicates for each count_tri.

/*@ requires count _ pack (* mem , self );
     ensures count _ pack (* mem , self );
     ensures count _ tr  
	 ( \old (* mem), x, *out , *mem ); */
void count _ step ( _ Bool *out , S * self )
                   /*@ ghost (gS \ghost *mem) */ {
  int time ;
  _ Bool init , b;
  count _ clear _ reset ( self )/*@ ghost ( mem)*/;
  //@ assert count _ tr0  
	 ( \at (* mem , Pre), x, * mem );
  b = (self -> ptime == 3);
  //@ assert count _ tr1  
	 ( \at (* mem , Pre), x, b, * mem );
  init = _ arrow _ step  
	 (self ->a)/*@ ghost (& mem ->a) */;
  //@ assert count _ tr2  
	 ( \at (* mem , Pre), x, b, init ,
  //@                    *mem );
  if ( init ) { time = 0; } else {
    if (b) { time = 0; } else {
      time = self -> ptime + 1;
    }
  }
  //@ assert count _ tr3  
	 (\at (* mem , Pre), x, time ,
  //@                   *mem );
  *out = ( time == 2);
  //@ assert count _ tr4  
	 (\at (* mem , Pre), x, time , *out ,
  //@                   *mem );
  self -> ptime = time ;
  //@ ghost mem -> ptime = time ;
  //@ assert count _ tr5  
	 (\at (* mem , Pre), x, *out ,
  //@                   *mem );
}

The contract requires that the state correspondence holds 
before the call, and ensures it is preserved after. Moreover, it 
states that the transition relation holds between the ghost 
state before the call and the ghost state after, ensuring the 
correctness result: the C code respects the semantics of the 
node. The terms \old(*mem) in the contract and \at(*mem, 
Pre) in the assertions both refer to the value of *mem before 
the call of the function. In practice, we also generate asser-
tions enabling the establishment of the memory correspon-
dence at each intermediate program point.

5. OPTIMIZATIONS AND PROOFS
First, simply notifying reset at C code level instead of actually 
performing it is already a supported optimization that does 
not go unnoticed when running Lustre state machines. This 
is also the way the SCADE suite handles node resetting.

We detail this in the following several other optimizations 
that LustreC supports. Since these optimizations may replace 
or erase variables, and even modify the machine statements 
themselves, we must take care of the partial transition rela-
tions that annotate them. Whereas f_tri and f_tr keep the same 
definitions, the actual parameters ​​ 

→
 ​L​i​​​​ of f_tri ​​​(​​S, ​ 

→
 I​, ​ 
→

 ​L​i​​​, ​ 
→

 ​O​i​​​, ​S ′​​)​​​​  
may change according to the optimization level. Also, moving 
annotations around may yield capture problems. There are 
several ways of handling those issues, for example, involving 
existential quantification, but we choose to rely instead on 
so-called ghost variables. Ghost variables are simply variables 
that can only be used in the specification but not in the ac-
tual executable code. Hence, it means the semantics encod-
ing generated when producing unoptimized machine code is 
unchanged by further optimizations. We describe the effects 
of the different optimizations applied to the source Lustre toy 
example presented in Figure 9a, which underlines the use of 
user-defined enumerated types as clocks. Figure 9b is the gen-
erated machine code without any optimization. We represent 
annotations as special --@ f _ tr _ i(...) comments, where 
the partial transition relations f_tri are defined as described 
in the previous section (without the ​S​ and ​​S ′ ​​ parameters since 
they are irrelevant to optimizations), and introduced assign-
ments to ghost variables are written --@ x := e. Figure 9c 
presents the fully optimized machine code, and the four main 
optimizations are presented in the following.

Conditionals fusion. Without further transformations, two 
adjacent equations with the same sub-clock are transformed 
into two adjacent conditional statements guarded on the 
same condition. A typical optimization that Lustre compil-
ers following the modular approach implement is a rewriting 
pass that fuses such groups of conditionals. Extending read-
ily,4 implementation consists in merging adjacent condition-
al branches and regrouping their annotations. We can see in 
Figure 9c the high number of generated conditionals fused 
to produce better code, particularly on the conditionals con-
cerning the d variable.

Variable inlining. Variable inlining occurs only when its 
defining expression is atomic. Thus, substituting this expres-
sion for the variable does not duplicate complex expression 
evaluation. Such substitutions are performed in code only. 
The annotations are untouched, since the defining state-
ment is turned into a ghost one so that the inlined variable is 
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kept alive in the specification. In Figure 9c, variables b1, b2, 
b3, c1, and c2 are inlined in the statements but turned into 
ghost variables in the specification.

Variable recycling. We exploit variable reuse, applied only 
between variables of the same type, for the sake of safety and 
traceability. We leverage the results of liveness analysis and 
clock calculus to reuse dead variables or clock-disjoint ones, 
that is, variables that cannot simultaneously bear meaning-
ful values in the same time frame. As for variable inlining, 
the variable replaced by a reused one is turned into a ghost 
variable to keep its original definition in the specification. 
However, because code after this optimization is no longer in 
static single-assignment (SSA) form, capture problems may 
arise when annotations refer to a variable that has been re-
used. To deal with such issues, we introduce for each variable ​
y​, which will later be reused a ghost alias ​​y ′ ​​ assigned only once 
with the original defining value of ​y​. In subsequent annota-
tions, ​​y ′ ​​ is substituted for ​y​. On the example in Figure 9c, only 
the variable z is replaced by y. The aforementioned capture 
problem does not arise here and there is no need to introduce 
a ghost alias y’.

Enumerated type elimination. For a variable ​x​ belonging 
in an enumerated type (for example, a clock), the compiler 
merges conditional assignment of ​x​ to enumeration con-
stants with a conditional statement depending upon ​x​. This 
proves useful for clock-heavy programs obtained from Lustre 
state machines. We again address potential capture prob-
lems by turning variable ​x​ into a ghost variable. We can see in 
the code in Figure 9c that variables c and d have been elimi-
nated. As a result, switch cases are merged accordingly and 
each variable is kept as a ghost in the specification.

6. EXPERIMENTAL RESULTS
To evaluate our compiler extension, we ran it against a set of 
Lustre programs taken from the benchmarking suite of the 
Kind tool,17 and from the test suite of the CoCoSim tool.6 We 
used the default level of optimization of the compiler (O2), 
that is conditionals fusion and variable inlining. The tests 
were run on a machine equipped with two Intel® Xeon® 
processors E5-2670 v3 @ 2.30 GHz with 12 cores (24 threads) 
each and 64 GB RAM. Frama-C / WP 26.1 is run with a global 
timeout of 15360 s, using the Alt-Ergo 2.4.2, CVC4 1.8 and Z3 
4.11.2 solvers in parallel, with a timeout per individual proof 
obligation (PO) of 60 s.

type en1 = enum { On, Off };
type en2 = enum { Up, Down };

node clocks (x: int) returns (y: int)
var c: en1 clock; d: en2 clock;
  b1,b2,b3,z: int; c1,c2: bool

let
 c1 = (x >= 0);
 d = if c1 then Up else Down;
 c2 = (x = 0) when Up(d)
 c = if c2 then Off else On;
 b2 = 2 when Off(c);
 b1 = 1 when On(c);
 z = merge c (On -> b1) (Off -> b2);
 b3 = 3 when Down(d);
 y = merge d (Up -> z) (Down -> b3);
tel

(a) Lustre code

step(x: int) returns (y: int)
var c: en1; d: en2; b1,b2,b3,z: int; c1,c2: bool
{
 c1 := x >= 0;
 --@ clocks_tr1(x, c1)
 if (c1) { d := Up } else { d := Down }
 --@ clocks_tr2(x, d)
 case (d) { Up: c2 := x = 0 }
 --@ clock_tr3(x, d, c2)
 case (d) {
  Up: if (c2) { c := Off } else { c := On } }
 --@ clocks_tr4(x, d, c)
 case (d) { Up: case (c) { Off: b2 := 2 } }
 --@ clock_tr5(x, d, c, b2)
 case (d) { Up: case (c) { On: b1 := 1 } }
 --@ clocks_tr6(x, d, c, b1, b2)
 case (d) { Up: cas (c) { On: z := b1
      Off: z := b2 } }

 --@ clocks_tr7(x, d, z)
 case (d) { Down: b3 := 3 }
 --@ clocks_tr8(x, d, b3, z)
 case (d) { Up: y := z
    Down: y := b3 }
 --@ clocks_tr9(x, y)
}

(b) Machine code

step(x: int) returns (y: int)
{
 --@ c1 := x >= 0
 --@ clocks_tr1(x, c1)
 if (x >= 0) {
  --@ d := Up
  --@ c2 := x = 0
  if (x = 0) {
   --@ c := Off
   --@ b2 := 2
   y := 2
   --@ z := y
  } else {
   --@ c := On
   --@ b1 := 1
   y := 1
   --@ z := y
  }
 } else {
  --@ d := Down
  --@ b3 := 3
  y := 3
 }
 --@ clocks_tr2(x, d)
 --@ clocks_tr3(x, d, c2)
 --@ clocks_tr4(x, d, c)
 --@ clocks_tr5(x, d, c, b2)
 --@ clocks_tr6(x, d, c, b1, b2)
 --@ clocks_tr7(x, d, z)
 --@ clocks_tr8(x, d, b3, z)
 --@ clocks_tr9(x, y)
}

(c) Full optimization

Figure 10. Experiments report with O2 optimization level.
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7. DISCUSSION
We succeeded in automatically providing to each Lustre 
source code an abstract operational semantics whose 
preservation can be proved with high success rate at the 
C target level of a Lustre compiler. We achieved our goal 
with a translation validation technique, on a non trivial 
subset of the Lustre language while enabling code optimi-
zations. To the best of our knowledge, the most aggressive 
of our optimizations, such as clock disjoint time-frame 
variable recycling, are not supported by the state-of-the-
art SCADE Suite compiler. The automated support for 
such strong specification of C code also allowed us to un-
veil a bug in the original LustreC compiler optimization 
strategies.

Building on this promising first proposal, our work 
can be extended in several directions. First, we need to 
investigate how to increase efficiency and robustness of 
the solvers, by providing aggressive context pruning tech-
niques and guidance to these tools. We may for instance 
reconsider our position detailed in section 4.2 about state 
correspondence once the Frama-C tool supports local rea-
soning again. Also, even though using ghost variables in-
stead of existential quantification as explained in section 5 
probably helps solvers by keeping the exact same code and 
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may try a different balance between these two approaches. 
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run-time errors and uninitialized variables, otherwise 
such programs simply cannot be proved to follow their 
specification. We may investigate what remains of their 
specification when well-formedness does not hold.

Finally, with regard to our relational semantics, we plan 
to address its relationship with the canonical dataflow one 
and envision initiating another approach based upon a for-
malization in a proof assistant such as Coq,complemented 
with automated proof strategies, instead of putting heavy 
stress on first-order solvers. We also plan to use it to prove 
high-level functional contracts of Lustre programs.
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