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ABSTRACT

Automatic security protocol analysis is a fruitful research topic that
demonstrates the application of formal methods to security analysis.
Several endeavors in the last decades successfully verified security
properties of large-scale network protocols like TLS, sometimes
unveiling unknown vulnerabilities.

In this work, we show how to apply these techniques to the
domain of IoT, where security is a critical aspect. While most exist-
ing security analyses for IoT tackle individually either protocols,
firmware or applications, our goal is to treat IoT systems as a whole.
We focus our work on a case study, the Armadillo-IoT G4 device,
highlighting the specific challenges we must tackle to analyze the
security of a typical IoT device. We propose a model using the
TAMARIN prover, that allows us to state certain key security proper-
ties about the device and to prove them automatically.
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1 INTRODUCTION

Internet of Things (IoT) is a paradigm where many different ob-
jects can be queried and operated over communication networks.
IoT devices are pervasive in fields like home automation, health-
care, transportation, energy management, manufacturing, etc. Be-
cause these applications can be either privacy or safety-critical,
security is widely acknowledged as one of the major stakes of
IoT growth [39]. This work is part of a project whose aim is the
analysis and verification of security properties of IoT systems. In
particular, we present the case study of the Armadillo-ToT G4!

Thttps://armadillo.atmark-techno.com/armadillo-iot-g4

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

HASP °23, October 29, 2023, Toronto, Canada

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1623-2/23/10.

https://doi.org/10.1145/3623652.3623667

Ichiro Hasuo
National Institute of Informatics
Tokyo, Japan
hasuo@nii.ac.jp

Taro Sekiyama
National Institute of Informatics
Tokyo, Japan
sekiyama@nii.ac.jp

device, which embodies a typical architecture for secure IoT de-
vices: it embeds a secure element and a main chip that features
the ARM TrustZone technology [30] to provide a Trusted Execu-
tion Environment (TEE) [34].TEEs are a standard mean in secure
IoT systems [36] to provide both secure execution isolation for so-
called Trusted Applications (TAs) and secure isolated storage, e.g.,
for secrets. The analysis of a typical platform like the Armadillo is
challenging as it requires:

e Modeling the interactions between elements following dis-
tinct protocols and specifications;

e Modeling a notion of global shared state;

e Modeling the execution of TAs.

Most existing research on security analysis of IoT systems fo-
cuses independently either on communication protocols, firmware,
or applications. However, independent analysis does not ensure
that an entire IoT system is secure. For example, if a protocol does
not meet a property assumed in the analysis of an application, the
analysis results for the protocol and application cannot be combined
on the whole system.

Our goal with this work is to approach security analysis of IoT
systems as a whole and to model the interactions between these
components. We follow the symbolic model-checking approach.
Over the last decades, symbolic model-checking techniques have
been designed to tackle the difficult challenges of security analysis.
Tools like AVISPA [4] or DeepSec [10] achieve automated model
checking by restraining the generally undecidable security problem
to its decidable fragment. Other automated provers like ProVerif [6]
or TAMARIN [11, 28, 35] give up on termination and decidability
to allow analysis of a broader class of protocols without bounding
the number of sessions. Researchers have used these two state-
of-the-art tools to prove security properties such as secrecy or
authentication for large-scale real-world protocols like TLS 1.3 [5,
13], ARINCS823 [7], Signal [26], 5G AKA [12] or WPAZ2 [14]. Because
these tools build on the general theoretical frame of state/transition
systems, we show that their original scope restricted to network
protocol analysis can be extended to model and analyze typical IoT
systems.

Our contribution is a TAMARIN model that treats selected func-
tional aspects of the Armadillo device. This model allows us to
reason about and automatically prove certain critical security prop-
erties of the device. Our approach is general enough to be readily
extended to other case studies. Namely, we prove the secrecy of its
root of trust and the integrity of TAs execution.
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We organize the paper as follows. We discuss related work in
section 2. In section 3, we give an overview of the Armadillo device.
Section 4 briefly presents the TAMARIN prover, and we detail our
model in section 5. We discuss our results and conclude in section 6.

2 RELATED WORK

Formal methods approaches to security analysis in the domain of
IoT are a recent research topic. Hofer-Schmitz and Stojanovi¢ [23]
thoroughly review existing work in this vein, detailing the tech-
niques and tools used as well as the specific treated aspects. In
general, most of these works focus on analyzing the security of
protocols that happen to be commonly used by IoT devices, like
ZigBee, Z-Wave, or Sigfox?. For example, Kim et al. [25] propose
a TAMARIN model showcasing Denial-of-Service (DoS) attacks on
Sigfox. Our approach is complementary: instead of focusing on
one protocol, we are interested in the interactions of the different
components using different protocols inside a typical IoT device.

There exist frameworks targeting security analysis for IoT. So-
TERIA [8] extracts a state/transition system model from existing
IoT applications’ source code and performs model checking on the
extracted model. IorSan [31] follows the same approach. While the
scope of SOTERIA focuses on applications, IoTSAN also encompasses
their interactions with other applications, sensors and actuators.
Both frameworks are tightly bound to the Groovy source language
and to the SmartThings ecosystem in general. We pursue the same
goals as IoTSAN, while proposing a more agnostic approach. On
the other hand their fine-grain analysis at the application level is
not offered by our current solution: it is a topic for future work.
Iota [17] is another recent framework following a different ap-
proach. It builds logic Prolog models of IoT systems from their
formal descriptions and generates attack graphs using MulVAL [33]
for further analysis.

On the technical side, we take inspiration from the work of Kre-
mer and Kiinnemann [27], who show how to extend TAMARIN to
support global and shared state. Jacomme et al. [24] presented an-
other extension even more relevant to us that provides support for
execution in a TEE, with a reporting system that allows signing
the output of trusted computation. These two generic extensions
are part of SApIC [9], an alternative front-end for TAMARIN. SAPIC
proposes a syntax close to the applied z-calculus [2, 3] internally
translated into TAMARIN’s rewriting rules. SApIc is still under de-
velopment, and we only use the original TAMARIN formalism.

3 OVERVIEW OF THE ARMADILLO-IoT G4

The Armadillo-IoT G4 is part of a family of business card-sized
embedded platforms mainly targeting high-performance Artificial
Intelligence (AI) processing and machine learning. It is equipped
with an Arm Cortex-A53 4-core SoC, the i.MX 8M Plus3, Gigabit
Ethernet ports, USB 3.0, HDMI interfaces, and a Neural Processing
Unit (NPU).

The device is security oriented. It runs a dedicated Linux dis-
tribution designed to be minimal and uses containers to achieve

Zhttps://csa-iot.org/all-solutions/zigbee, https://www.z-wave.com, https://www.sigfox.
com

Shttps://www.nxp.com/products/processors-and-microcontrollers/arm- processors/i-
mx-applications-processors/i-mx-8-applications-processors/i-mx-8m-plus-arm-
cortex-a53-machine-learning-vision- multimedia-and-industrial-iot:IMX8MPLUS
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Figure 1: Architecture overview

separated sandboxed execution of applications. It benefits from
the TrustZone technology* offered by the i.MX to feature a TEE
implemented by OP-TEE [1]. The device is equipped with a separate
secure element, the EdgeLock SE050°, used to provide a root of
trust and secure cryptographic operations. In this work, we focus
on the interactions between the so-called Normal world N—also
called Rich Execution Environment (REE) in TEE terminology, that
is, the Linux-based OS and the contained applications—and the
Secure world S—the SE050 element and OP-TEE.

Figure 1 gives a visual overview. On the left is the i MX board: a
non-secure contained Client Application (CA) running in the REE
can request the execution of a secure TA in the TEE. The corre-
sponding communication between Linux and OP-TEE is handled
through the Trusted Framework (TF), using a sequence of messages
and shared memory. On the right, establishing a secure channel
over an IC bus enables communication between the main board
and the secure element SE050.

4 THE TAMARIN PROVER

The TAMARIN prover [11, 28, 35] is a tool that allows unbounded ver-
ification of network protocols in the symbolic model. Like Maude-
NPA [16], it relies on rewriting logic to describe security protocols
and their execution. A protocol is specified as a set of multiset rewrit-
ing rules defining a Labelled Transition System (LTS). The protocol
can be analyzed by defining properties in a temporal first-order
logic checked against a message deduction theory implementing
the Dolev-Yao adversary model [15] and user-defined equational
theories. The verification process builds on a constraint-based back-
ward search algorithm and can run fully automated or be used in
an interactive graphical mode. Termination is not guaranteed since
the general security problem in the unbounded setting is undecid-
able [29]. We give in the following a brief overview of TAMARIN;
the details are in the original presentation [35].

Term algebra. Messages are represented using a sorted term al-
gebra. A term can be a public name of sort pub (e.g., a participant
name), a fresh name (e.g., a nonce) of sort fr, a variable, or the appli-
cation of a function symbol f with arity n from a given signature

*https://www.arm.com/en/technologies/trustzone-for-cortex-a
Shttps://www.nxp.com/products/security-and-authentication/authentication/edgelock-
se050-plug-and-trust-secure-element-family-enhanced-iot-security-with-high-
flexibility:SE050
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Figure 2: Built-in message deduction rules

(e.g., a cryptographic primitive) to n terms f(t1, . . ., t,). To specify
the sort of a variable, we use the following syntax: ~x is of sort fr
and $x is of sort pub. If unspecified, the default sort is the message
sort msg. Equations reflecting the properties of the functions define
the equational theory (e.g., cancellation of encryption/decryption
and arithmetic properties for Diffie-Hellman exponentiation).

Facts. In TAMARIN, the state of the LTS defined by a protocol is
represented as a multiset of facts. A linear fact is a fact symbol (in
uppercase by convention) applied to terms F(t1, .. ., t5). A persistent
fact is noted !F(ty,...,t,). If a fact is linear, it can be consumed
from the state when a transition fires, while persistent facts stay
in the state forever. TAMARIN defines built-in facts: In(m) denotes
that a message m is received from the network, Out(m) that m is
sent over the network, Fr(n) represents the generation of a fresh
name n, and K(m) models the fact that the adversary knows term
m—K is always persistent and the ! modifier is omitted.

Rewriting rules and traces. A protocol is specified as a set of
multiset rewriting rules. A rule is written as follows:

p p p is a premise multiset of facts
—a] or = where {c is a conclusion multiset of facts
c c a is an action set of facts

The LTS described by the rules is labeled by the action facts: the
sequence of action facts resulting from an execution of the system
is called a trace. A transition can occur non-deterministically as
long as there exists a rule whose premises p are multiset-wise
contained in the current state. As a result, the matching sub-multiset
is rewritten into the conclusions ¢, and the set of action facts a is
appended to the trace.

Figure 2 presents the built-in rules of TAMARIN associated with
the facts In, Out, Fr and K, that implement the message deduction
theory. The first rule models the generation of fresh nonces, which
can always fire without any premise. The remaining describe the
actual message deduction: the adversary can learn any term sent
on the network, send any term they know, learn any public term,
generate fresh nonces themselves, and apply any public function
symbol to terms they know—note that TAMARIN offers the possibil-
ity of specifying private function symbols that the adversary cannot
use, but we do not use this feature in this work.

Security properties. We can specify security properties about a
protocol as formulas in a first-order temporal logic over traces.
The additional temp sort characterizes timepoints, i.e., indexes of
the trace, to reason about instants. The temp sort can be specified
on variables using the #x syntax. The logic supports the universal
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Figure 3: Binding sequence diagram

and existential quantifiers All and Ex, the implication =, conjunc-
tion &, disjunction |, and negation not. One can assert that a fact
occurred at a timepoint i: F(m) @ #i; that a timepoint i precedes
another j: #i < #j; or that two variables are equal: x = y. A protocol
as a set of rules P satisfies a formula ¢, written P = ¢, if all possible
traces of P satisfy ¢.

Verification algorithm. To verify that P |= ¢, TAMARIN first per-
forms a normalization phase on P and ¢, then tries to produce a
proof by contradiction. It performs a backward search in the LTS
graph of P to try to find a counter-example, i.e., an attack, by using
an incremental constraint-solving algorithm to solve the constraint
system encoded from ¢. If the algorithm terminates, it either found
an attack or proved P | ¢.

5 THE TAMARIN MODEL

The Armadillo-IoT G4 is a simple device, but reasoning formally
about its security is an involved task since it comprises distinct hard-
ware and software components that communicate with each other
through different channels. In this section, we detail a restricted
TaMmARIN model which covers three key security aspects:

The binding process between the i.MX board and the SE050 se-
cure element establishes a session-based private encrypted
channel over the I2C bus. This is critical as it ensures that
the secure element, which is used to perform cryptographic
operations and to store the root of trust of the device, is
accessed and operated securely.

The derivation of the Secure Storage Key (SSK) which is a se-
cret key used by OP-TEE to encrypt storage operations. The
secrecy of this key is crucial since it is the basis of the security
of the storage in the Secure world.

The execution of TAs running in the TEE. To keep our model
general, we focus here on the integrity of the executed code.

5.1 Binding the secure element

As a first security step, the Armadillo device uses secure boot to
establish a cascading chain of trust, as described in the Armadillo
documentation [38]. Secure boot ensures the authentication at boot-
time of the firmware and operating system. It is a critical feature for
IoT devices to prevent an attacker from booting its own malicious
code. As part of this process, OP-TEE boots before Linux, and uses
its own I2C driver to bind with the SE050. Afterward, as indicated
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Figure 4: Binding rewriting rules

in the OP-TEE documentation [18], subsequent communication
between the main board and the secure element is managed securely
through the REE’s I?C driver, for performance reasons.

The binding process implements the Secure Channel Protocol 03
(SCP03) specified by GlobalPlatform® [20]: it establishes an en-
crypted and MAC-authenticated channel. The communication be-
tween the two elements respects an Application Protocol Data
Unit (APDU) interface specified by NXP [32]. Figure 3 represents
the sequence diagram of the process. At the end of the sequence,
both elements authenticated each other and have the same session
keys used for subsequent encryption and MAC-ing.

The TaMARIN rules describing the binding process are shown in
figure 4. As a convention, we will always typeset rules representing
operations performed by OP-TEE with a light gray background.
The first rule represents the generation of the host challenge as a
fresh nonce ~cha", and sending the InitializeUpdate message on the
network. The syntax *InitializeUpdate’ denotes a public name
used for identifying the message. TAMARIN supports tuples through
the (t1,...,1,) syntax. As a simplification, we do not model the
I2C channel independently of the default network channel. The
standard design pattern in TAMARIN to model protocols that execute
in ordered steps is to use facts to represent the step sequence state:
we save the host challenge for later using the lnitStTEE(~chah) fact.
The fact |TEE(zee;) is a state fact modeling initialization of OP-TEE,
we can ignore the meaning of tee; for now.

The second rule models the reception of the InitializeUpdate
message by the secure element. We assume a persistent fact stating
the existence of two Advanced Encryption Standard (AES) keys
kenc and kpqe that are static and shared by the host and the card
prior to the binding. The secure element also generates a challenge
and uses it with the received host challenge to derive the session
keys senc and smqce from kepe and kpqe respectively. To model the
Key Derivation Function (KDF) used for this derivation, we use

Shttps://globalplatform.org

the TAMARIN built-in hashing function h. Then, the secure element
generates a cryptogram from the s;;4, key using the challenges and
a static string ’card’. While this generation is specified to use the
same KDF, we decided to model it without loss of generality using
a user-specified function cryptogram. Finally, the secure element
sends back its challenge and its cryptogram.

When the host receives the response message in the third rule, it
proceeds to the exact same key and cryptogram derivation steps. To
model the verification of the cryptogram, we use so-called restric-
tions: a restriction is a formula used to restrict the traces TAMARIN
considers during the verification phase. This is the standard way in
TAMARIN to filter out unwanted behaviors and to model branching
or operation success. We denote the equality restriction using the =
operator: cry® = cryh’c means that we only consider traces where
the two cryptograms are equal. Finally, the host generates its own
cryptogram with the static string *host’ and sends it with the
ExternalAuthenticate message to the card, which will perform a
similar verification as modeled by the fourth rule. Upon verification
success, the third and fourth rules both record authentication in the
trace, and save the session keys sene and spmqc in permanent state
facts, for subsequent encrypted and authenticated communication.

5.2 Deriving the Secure Storage Key

OP-TEE is an open-source implementation of a TEE that respects
GlobalPlatform specification. Specifically, the TEE Internal Core
API [21] defines a notion of Trusted Storage (also called Secure
Storage). This storage should guarantee the confidentiality and
integrity of the data, authentication, and separation between TAs.
The default implementation chosen by OP-TEE relies on en-
crypted file operations performed in the TEE on the Normal world
file system of the REE. Data encryption is handled by a cascade of
derived keys. This section focuses on SSK, a per-device key gener-
ated at OP-TEE boot time, according to the following scheme:

SSK = HMACSHA256(HUK, Chip_ID)


https://globalplatform.org
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Figure 5: SSK derivation sequence diagram

The HUK and Chip_ID are platform-dependent, but the documenta-
tion recommends that HUK must be secret and not readable directly
from software. In OP-TEE source code, the two following functions
to access HUK and Chip_ID respectively are stubbed and need to
be implemented by each platform:

TEE_Result tee_otp_get_hw_unique_key(...);
int tee_otp_get_die_id(...);

According to the source code, the Chip_ID is fetched from the SE050
secure element after the binding process and the establishment of
the SCP03 secure channel. Figure 5 shows this ideal sequence di-
agram. The HUK is obtained from the i.MX board’s own secure
components. The Chip_ID is requested by OP-TEE using the estab-
lished session keys sepc and spqc to encrypt and authenticate the
APDU message ReadObject sent to the secure element, as required
by the specification [32].

The corresponding TAMARIN rules are shown in figure 6. The
first rule initializes OP-TEE and generates the secret HUK ~huk.
Again, we can ignore the facts mentioning ~tee; for now. Similarly,
the second rule initializes the SE050 secure element and generates
the secret Chip_ID ~chipID.

The third rule models sending the APDU message ReadObject
to request the Chip_ID, named UNIQUE_ID in the secure element.
The message is encrypted and MAC-ed using the session keys es-
tablished previously by the SCP03 binding process described in sec-
tion 5.1, as represented by the premise fact !SessKeysTEE (Senc, Smac)-
We use a user-supplied function symbol mac to represent the
MAC operation, while the (symmetric) encryption uses the built-in
TaMARIN function senc.

In the fourth rule, we use pattern matching to model the success-
ful decryption and un-MAC-ing of the APDU message by the secure
element. Pattern matching allows writing more compact rules that
model the success of operations without relying on restrictions and
function destructors, e.g., the sdec destructor symbol that models
explicit decryption. In turn, the secure element answers with an
encrypted and MAC-ed APDU message carrying the Chip_ID value.

Finally, on receiving this last message, OP-TEE can perform the
SSK derivation ssk = h((huk, chipID)). Again, pattern matching
models successful decryption and un-MAC-ing.
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5.3 Trusted Application execution

After the booting process, the REE and the TEE run side-by-side.
The typical execution flow is that a Client Application (CA) running
in the REE requests the execution of a Trusted Application (TA) by
the TEE, to perform secure operations. In OP-TEE, this execution
flow complies with TEE Client API Specification [19] which defines
fundamental concepts:

Context: represents the connection between the CA and the TEE.
Any number’ of concurrent contexts can be initialized.

Session: represents the connection between the CA and the TA,
identified by its Universally Unique IDentifier (UUID). Within
a context, any number’ of concurrent sessions can be opened.

Command: represents the operation to be executed by the TA.
Within a session, any number’ of concurrent commands can
be called.

Shared Memory: allocated by the CA. It is used to transfer data
between the CA and the TA.

Moreover, OP-TEE uses the shared memory to allow dynamic load-
ing of the code of TAs. Figure 7 presents the sequence diagram
corresponding to the loading and execution of a TA. We simpli-
fied the diagram: when an arrow crosses several components, it
abstracts a sequence of messages between those components into
one. The three labeled blocks Contexts, Sessions, and Commands
represent the unbounded number of corresponding sub-sequences
as loops. When a CA opens a session, OP-TEE will ask the REE
to fetch the corresponding Executable and Linkable Format (ELF)
binary code stored in its storage into the shared memory. Then
upon verification of the signature of the code, OP-TEE loads the
code from the shared memory into its own memory, for further
execution of commands. Finally, sessions and contexts are closed.

The TAMARIN rules for our model are shown in figure 8. First, we
simplify the execution of a CA, stating that the REE can initialize
a context with the TEE at anytime, as long as the TEE has been
previously initialized (modeled by the !TEE(teej) fact). The second
rule represents the initialization of a context by OP-TEE, identi-
fied by a fresh identifier ~ctx. The action fact InitContext(~ctx),
along with the LoopContext(ctx), InitSession(ctx, uuid, sess) and
LoopSession(ctx, uuid, sess) action facts in further rules, will be
used for proof purposes, as explained in the next section.

After the initialization of a context, the CA can request the open-
ing of a session with a specific TA identified by its identifier uuid.
We use the network channel to bind this identifier, to model the
fact that the adversary might know it. In the fourth rule, OP-TEE
receives the OpenSession message, opens a session identified by
a fresh identifier ~sess, and asks the REE to load the code of the
corresponding TA into the shared memory.

When the REE receives the LoadTA message from OP-TEE, it
loads the signed binary code in ELF format from its storage to the
shared memory. The permanent fact !Storage(’ TA’, uuid, elf;) mod-
els the binding of the identifier uuid to the code elf; in a map called
’TA’ inside the storage. Similarly, SharedMem(sess, * TA’, uuid, elfs)
linearly models the binding of uuid to elf; in a map called ’ TA’ rep-
resenting a shared memory area allocated for the session sess. The

"Implementation-defined [19].
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4

Out(mac(senc({’ReadObject’, "UNIQUE_ID’)), Senc)> Smac)

In(mac(senc({’ReadObject’, "UNIQUE_ID’)), Senc), Smac)

Out(mac(senc({’ReadObject_R’, ’UNIQUE_ID’, chipID)), Senc), Smac)

'HUK (huk) 1SessKeysTEE (Sencs Smac)

ChipIDStTEE()
In(mac(senc({’ReadObject_R’, ’UNIQUE_ID’, chipID}), Senc)> Smac)
5

1SSK (ssk)

{DeriveSSK(ssk)] where ssk = h({huk, chipID))

Figure 6: SSK derivation rewriting rules

| ca || ree ][ opmEE || TA |

Run ~ -

S

Contexts) InitializeContext

Sessions ) OpenfS¢ssion

LoadTA

check signature

Commands) InyokeCommapndg

CloseSe¢ssion

FinalizeContext

Figure 7: TA execution sequence diagram

sixth rule models the loading of the TA code from the shared mem-
ory to the OP-TEE memory, modeled by the Running fact. The
verification of the signature of the binary code uses the built-in
functions revealSign, getMessage, revealVerify, pk and true:

revealVerify(revealSign(m, k;), m, pk(ks)) = true()
getMessage(revealSign(m, kg)) = m

The variable m represents the data to sign with the private key k.
The public part of the key pair is given by pk(ks). In our rule,
we again use a restriction to assert the success of the signature
verification.

The seventh rule models the request from the CA to execute a
given TA command, identified by its identifier cmd, with a given
parameter payload. In full generality, depending on their size, the
CA can pass parameters to the TA through the shared memory,
but we do not model this feature in this work. We use the fact
ExecCmd(ctx, uuid, ~sess, cmd, payload) as a state fact to keep track
of the state of the TA waiting for the command to complete.

To model the execution of a command in the eighth rule, we use
an abstract user-defined function exec that takes the ELF code of
the TA, the session identifier, the command identifier and the input
parameter, and returns the output. Following ideas from Jacomme
et al. [24], we rely on locations to model the integrity of OP-TEE.
The idea is to model the origin of computation using TAMARIN
terms. This is akin to a signature-based authentication system. OP-
TEE does not directly feature reporting, but our model adapt these
ideas to model its integrity. The abstract function report produces
a report proof that the command output has been produced at
location tee;. In turn, in the ninth rule, the CA checks the report
using a restriction and the function checkReport which satisfies
the following:

checkReport(report(m, 1), m, 1) = true()

The four last rules are straightforward: they model closing ses-
sions and finalizing contexts.

We complete our model with rules in figure 9. The first one
provisions the initial shared keys used during the binding process.
The second one establishes the secret TA signing private key, and
the last one installs the binary code, represented by the public name
’bin_code’, in the ’TA’ map of the storage with key *42’.

5.4 Security properties and verification

5.4.1 Liveness properties. The first properties that we need to ver-
ify are liveness, or executability properties. Such properties ensure
that the model is actually productive and that further security prop-
erties do not hold vacuously. To ensure liveness, it suffices to show
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ITEE(tee;)

In(’InitializeContext’)
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Fr(~ctx)

1
Out(’InitializeContext’)

Context(~ctx)

{InitContext(~ctx)]
Context(~ctx)

In(uuid)

[LoopContext(~ctx)]

3
Context(~ctx)

In({’OpenSession’, ctx, uuid))

Out({’OpenSession’, ~ctx, uuid))

Fr(~sess)

Session(ctx, uuid, ~sess)

Session(ctx, uuid, sess) In({’LoadTA’, uuid))

IStorage(’ TA’, uuid, elf;) [

{InitSession(ctx, uuid, ~sess)]

Out((’LoadTA’, uuid))

LoadedTA(sess, uuid)

Session(ctx, uuid, sess)

Session(ctx, uuid, sess) ITASig(ktq_sig)
SharedMem(sess, * TA’, uuid, elfs)

Running(ctx, sess, elf)

Session( ctx, uuid, sess)

Session(ctx, uuid, ~sess)

SharedMem(sess, ’ TA’, uuid, elf;)

lLoopSession(ctx, uuid, sess)

elf = getMessage(elf;)

{LoopSession(ctx, uuid, sess)] where {revealVerify(elfs, elf, pk(kig_sig)) = true()

In({cmd, x))

{LoopSession(ctx, uuid, ~sess)]

Session(ctx, uuid, ~sess)

ExecCmd(ctx, uuid, ~sess, cmd, x)

Out((’ InvokeCommand’, ~sess, cmd, x})

Running(ctx, sess, elf) ITEE(teep)

In({’ InvokeCommand’, sess, cmd, x))

y = exec(elf, sess, cmd, x)

Running(ctx, sess, elf)

ITEE (tee;) ExecCmd(ctx, uuid, sess, cmd, x)
In({’ InvokeCommand_R’, sess, cmd, y, rpt))

Session(ctx, uuid, ~sess)

Out({’ InvokeCommand_R’, sess, cmd, y, rpt))

where {rpt = report(y, teey)

{ExecTA(uuid, cmd, x, y)] where checkReport(rpt, y, tee;) = true()

ClosingSession(~sess)

10
Session(ctx, uuid, ~sess)

Context(~ctx)

Out({’CloseSession’, ~sess)) lLoopSession(ctx, uuid, ~sess)

11
Context(~ctx)

Session( ctx, uuid, sess) In({’CloseSession’, sess))

[FinalizingContext(~ctx)}

Out({’FinalizeContext’, ~ctx)) | LoopContext(~ctx)

Context(ctx) In({’FinalizeContext’, ctx))
13

Figure 8: TA execution rewriting rules

Fr(~kenc) Fr(~kmac)
ISharedKeys(~kenc, ~kmac)

Fr("“ktafsig)
!TASig(~kmisig)

ITASig (kta_sig)
!Storage(’TA’, 42, revealSign(’bin_code’, ktq_sig))

Figure 9: Initialization rewriting rules

that there exists at least one trace where the considered event ap-
pears.

LEMMA 5.1 (SCP03 LIVENESS). There exists an execution where the
binding process is successful, that is, there exists a trace satisfying:

Ex#i #j. (AuthTEE() @ #i) & (AuthSE() @ #j)

LEMMA 5.2 (SSK LIVENESS). There exists an execution where the
SSK is successfully derived, that is, there exists a trace satisfying:

Ex ssk #i.DeriveSSK(ssk) @ #i

LEMMA 5.3 (TA EXECUTION LIVENESS). There exists an execution
where a command of the TA identified by > 42’ is successfully executed,
that is, there exists a trace satisfying:

Excmd x y #i.ExecTA(’42’, cmd, x, y) @ #i

TAMARIN automatically discharges lemmas 5.1 and 5.2, lemma 5.3
requires more work. The model describing the execution of the com-
mand of a TA is prone to entail the non-termination of TAMARIN’s
algorithm. We explain three techniques we applied to mitigate this
issue, described in more details in TAMARIN’s documentation [37].

Sort annotations. As a pre-computation step, TAMARIN tries to
construct the derivation chains that are the source of premise facts of
all the protocol rules. When it fails to find such sources, the partial
deconstruction chains remaining might lead to non-termination. In
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our model, some rules are responsible for partial deconstruction
chains, but we apply a simple trick to fix them. The idea is to guide
TAMARIN’s pre-computation process by providing atomicity hints
as sort annotations. For example, in the third rule of figure 8, we
explicitly annotate the sort of ~ctx as fresh, to prevent TAMARIN
from unifying the variable ctx with compound terms in the pre-
computation process. We apply this technique to specific rules in
a sound way in which we have the insurance that such annotated
variables are never instantiated by non-atomic terms.

Restrictions. We already described restrictions as a way to model
successful operations. We can also use them to make our model
more precise and avoid unwanted looping behaviors leading to non-
termination. In our model, we use a common pattern specifying as
a restriction that a rule with an action fact F can only fire once:

Allxy...x; #i #.
(F(x1,...x) @#0) & (F(x1,...,x1) @#)) = #i=#j
We apply this pattern to figure &8s fifth, tenth, and eleventh rules.

Induction. Some rules exhibit looping behavior, e.g., figure 8’s
third and fifth rules. Permanent facts are the standard way of dealing
with this problem, but we need the Context and Session facts to be
linear. In such cases, TAMARIN offers basic induction principles. The
idea is to make TAMARIN first prove auxiliary lemmas using those
induction principles, used later on for proving security lemmas
whose direct verification could otherwise not terminate. In our
case, the auxiliary lemmas are straightforward: we want to prove
that a specific rule originally produces each looping fact. That is, we
want to prove that the occurrences of such facts are well-founded.

LEMMA 5.4 (CONTEXTS ARE WELL-FOUNDED). For all executions,
any recurring occurrence of a context is preceded originally by its
creation, that is, all traces satisfy:

All ctx #i.
LoopContext(ctx) @ #i =

Ex #j. (InitContext(ctx) @ #j) & (#i < #j)
LEMMA 5.5 (SESSIONS ARE WELL-FOUNDED). For all executions,

any recurring occurrence of a session is preceded originally by its
creation, that is, all traces satisfy:

All ctx uuid sess #i.
LoopSession(ctx, uuid, sess) @ #i =
Ex #j. (InitSession(ctx, uuid, sess) @ #j) & (#i < #j)
5.4.2 Security properties. TAMARIN can automatically prove basic
secrecy properties about our model.

LEmMA 5.6 (HUK sEcrRECY). The adversary never learns the HUK,
that is, all traces satisfy:

All huk tee #i.
InitTEE (huk, teej) @ #i = not (Ex #j. K(huk) @ #j)
LeEMMA 5.7 (Curp_ID sEcREcY). The adversary never learns the
Chip_ID, that is, all traces satisfy:
All chipID #i.
InitSE(chipID) @ #i = not (Ex #j. K(chipID) @ #j)

We can also ensure that the adversary cannot produce reports
impersonating the TEE.

Lélio Brun, Ichiro Hasuo, Yasushi Ono, and Taro Sekiyama

LEMMA 5.8 (TEE REPORTING AUTHENTICITY). The adversary never
learns the TEE location, that is, all traces satisfy:

All huk teey #i.
INitTEE (huk, tee;) @ #i = not (Ex #j. K(tee;) @ #j)

6 DISCUSSION AND CONCLUSION

We presented a TAMARIN model supporting analysis of critical fea-
tures of a security-oriented IoT device. TAMARIN automatically veri-
fies our model of about 400 lines in about 15 s, on a laptop equipped
with a 10-core 12" Gen. Intel Core i7-1250U processor and 15.25 GiB
RAM. TAMARIN proves all our security properties correct, meaning
that it could not find any attack invalidating these properties on
the model. Generally speaking, anticipating performance cost is
hard during the design phase. For example, we use an additional
auxiliary lemma proved by induction specifically for the Running
recurring fact in the eighth rule of figure 8. This lemma is unneces-
sary for ensuring termination, but without it, the verification time
increases by one order of magnitude (150 s).

We designed our model to be simple enough to emphasize on
feasibility and generality and we only proved fundamental but basic
security properties. The main limitations reside in the TA execu-
tion representation. We want to model higher-order execution in
full generality, but to our knowledge, none of the automatic tools
for security analysis offers this kind of feature. In this paper, we
adapt ideas of Jacomme et al. [24], but modeling, e.g., encrypted
file operations by a TA involves further challenges that we want to
tackle as future work. The alternative Sapic front-end of TAMARIN
implements these ideas for modeling TEEs, along with concepts
about global and shared state [27], and we believe that we could
adapt our model to this language once its development reaches a
more stable state. Another related limitation is the discussed poten-
tial vulnerability in the communication with the secure element
SE050 through the REE’s I2C driver. To verify the safety of this
communication, we would need to model the interaction of a TA
with the SE050 and the details of the routing of the communication
between the TA, OP-TEE, the REE’s driver, and the SE050. In future
work, we could also allow the adversary to tamper the storage and
the shared memory directly.

Our model is general enough to be relevant for a large class of
secure IoT devices following the same standard TEE-based archi-
tecture using a secure element. In the future, we will extend this
first proof-of-concept model to support more features and protocols
of the device. In such cases, the ability of using composition tech-
niques would be highly beneficial to the automatic approach taken
by TAMARIN and other similar tools. This interesting research topic
has seen recent advances [22] that we also want to investigate.
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