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Abstract

The correct compilation of block diagram languages like
Lustre, Scade, and a discrete subset of Simulink is important
since they are used to program critical embedded control
software. We describe the specification and verification in
an Interactive Theorem Prover of a compilation chain that
treats the key aspects of Lustre: sampling, nodes, and delays.
Building on CompCert, we show that repeated execution
of the generated assembly code faithfully implements the
dataflow semantics of source programs.

We resolve two key technical challenges. The first is the
change from a synchronous dataflow semantics, where pro-
grams manipulate streams of values, to an imperative one,
where computations manipulate memory sequentially. The
second is the verified compilation of an imperative language
with encapsulated state to C code where the state is realized
by nested records. We also treat a standard control optimiza-
tion that eliminates unnecessary conditional statements.

CCS Concepts • Software and its engineering → Data

flow languages; Compilers; Formal software verification;
Semantics

Keywords Formally Verified Compilation, Synchronous
Languages (Lustre) Interactive Theorem Proving (Coq),
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1. Introduction

Lustre was introduced in 1987 as a programming language
for embedded control and signal processing systems [13]. It
gave rise to the industrial tool SCADE Suite1 and can serve
as a target to compile a subset of Simulink/Stateflow2 to
executable code [15, 61]. SCADE Suite is used to develop
safety-critical applications like fly-by-wire controllers and
power plant monitoring software. Several properties make
Lustre-like languages suitable for such tasks: constructs for
programming reactive controllers, execution in statically-
bounded time and memory, a mathematically well-defined
semantics based on dataflow streams [13], traceable and
modular compilation schemes [8], and the practicability of
automatic program verification [17, 25, 30, 38] and industrial
certification. These languages allow engineers to develop and
validate systems at the level of abstract block diagrams that
are compiled directly to executable code.

Compilation transforms sets of equations that define
streams of values into sequences of imperative instructions
that manipulate the memory of a machine. Repeatedly exe-
cuting the instructions is supposed to generate the successive
values of the original streams: but how is this to be ensured?
Existing approaches apply translation validation [49, 52, 60]
or industrial certification based on development standards
and coverage criteria [50]. We take a different approach
by formally specifying the source, target, and intermediate
languages, their corresponding models of computation, and
the compilation algorithms in the Coq Interactive Theorem
Prover (ITP) [63]. We state and prove a correctness relation
between the source and target semantic models, and build
on the CompCert project [10, 40] to integrate the semantics

1 http://www.ansys.com/products/embedded-software/ansys-scade-suite
2 http://www.mathworks.com/products/simulink/
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of machine-level types and operators and to extend the cor-
rectness relation to the level of assembly code for PowerPC,
ARM and x86 processors.

In this paper, we make the following contributions:

• The Vélus compiler that turns synchronous dataflow equa-
tions into assembly instructions and a proof of its correct-
ness in the Coq ITP (Section 2). Our compiler supports the
key features of the Lustre [13] language. Initial experimen-
tal results are encouraging (Section 5).

• We identify the invariants, lemmas, and proof structures
necessary to verify code generation, providing a blueprint
for performing similar work in any ITP. Specifically, we
(1) introduce a novel semantic model combining the infinite
sequences of dataflow models with the incremental manip-
ulation of memories that characterizes imperative models
(Section 3.2), and (2) exploit separating assertions to con-
cisely and modularly relate an idealized memory model to
the lower-level model of CompCert’s Clight (Section 4).

• We follow the architecture of the industrial SCADE Suite
compiler, including modular code generation (one sequen-
tial function per dataflow node) and an optimization to fuse
conditionals (Section 3.3). The verification of the optimiza-
tion uses properties of the source language and translation
function and shows the utility of our formalization.

• Our compiler front-end is implemented and verified para-
metrically with respect to an abstract interface of operators
(Section 4.1). This approach not only facilitates proof, it
also allows our tool chain to be instantiated with different
backends and their semantic models.

The outcome of our work is twofold. First, our Coq devel-
opment extracts to OCaml, providing us with an executable
compiler. Second, we have mechanically verified that for any
node f in a Lustre program G accepted by our compiler, for
any well-typed input stream xs and corresponding output
stream ys , the semantics of the generated assembly code is
an infinite execution trace that is bisimilar to the trace that
reads the stream of input values from, and writes the expected
output values to, volatile variables:

G⊢node f(
⇀xs ,⇀ys)

compile G f = OK asm

∃T, asm ⇓ T ∧ 〈VLoad(xs(n)).VStore(ys(n))〉
∞

n=0 ∼ T

This proof is obtained by composing CompCert’s original
correctness result, from Clight to assembly, and the novel
correctness result from Lustre to Clight that we present in
this paper. As in standard programming practice, we combine
and extend existing systems to produce new functionality.
By doing so in an ITP, we guarantee that the different parts
function together correctly.

2. Lustre and its Compilation

A Lustre program comprises a list of nodes. A node is a
named function between lists of input and output streams,
defined by a set of equations. Consider this example adapted
from the original paper [13]:
node counter(ini, inc: int; res: bool) returns (n: int)
let

n = if (true fby false) or res then ini else (0 fby n) + inc;
tel

This node counter takes three input streams—two of integers
and one of booleans—and returns a stream of integers. It
calculates the cumulative sum of values on inc taking the
value of ini initially or when res is true. In graphical editors,
like those of SCADE Suite or Simulink, this node would be
represented by a rectangle labeled with the node name and
having three input ports and one output port.

The value of the output n is defined by a single equa-
tion that freely mixes instantaneous operators (or and + ),
a multiplexer (if/then/else: both branches are active and the
value of the guard selects one of the results), and the ini-
tialized delay operator ‘fby’ (“followed by”). The initialized
delay corresponds to the flip-flop of sequential logic and
the z−1 of Digital Signal Processing. The subexpression
true fby false defines the stream T, F, F, F, . . ., and the subex-
pression 0 fby n defines a stream c such that c(0) = 0 and
∀i > 0, c(i) = n(i− 1).

We describe the other features of Lustre, namely node
instantiations and the when and merge sampling constructs,
after outlining the compiler architecture.

2.1 Compiler Architecture and Implementation

In the classical approach to compiling Lustre [13, 28], all
nodes are inlined and a control automaton is constructed to
minimize the code executed in a given state. In the clock-

directed modular approach [8], each dataflow node is com-
piled to a distinct sequential function and each equation is
assigned a static clock expression that becomes a conditional
in the imperative code.3 This approach is used in the industri-
ally certified SCADE Suite compiler and academic compil-
ers [23, 35]. It is the one addressed in our work.

Figure 1 outlines the successive source-to-source transfor-
mations of a clock-directed modular Lustre compiler.

The first four stages deal with dataflow programs. Parsing

turns a source file into an Abstract Syntax Tree (AST) without
type or clock annotations. Elaboration rejects programs that
are not well-typed and well-clocked, and otherwise yields an
(annotated) Lustre program that can be assigned a semantics.
Normalization ensures that every fby expression and node
instantiation occurs in a dedicated equation and not nested
arbitrarily within an expression. Scheduling sorts the dataflow
equations by variable dependencies in anticipation of their
translation one by one into imperative assignments: variables
must be written before they are read, except those defined

3 Various trade-offs of inlining and modularity are possible [43, 55].
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Figure 1. Clock-directed modular compiler architecture: the gray boxes and the solid arrows are addressed in this paper.
The white boxes and the dashed arrows are addressed in previous work [2, 3] or by CompCert [40].

e := expression

| x (variable)
| c (constant)
| ⋄ e (unary operator)
| e⊕ e (binary operator)
| e when x (sampling on T )
| e whenot x (sampling on F )

ce := control expression

| e (expression)
| merge ck ce ce (merge)
| if e then ce else ce (mux)

ck := clock

| base (base clock)
| ck onx (subclock on T)
| ck onotx (subclock on F)

eqn := equation

| x =ck ce (definition)
| x =ck c fby e (delay)
| ⇀x =ck f(⇀e ) (node call)

d := node declaration

| node f (
⇀
xty) returns

⇀
xty

var
⇀
xty let ⇀eqn tel

Figure 2. SN-Lustre : abstract syntax.

node counter(ini, inc: int; res: bool)
returns (n: int) var c: int; f: bool;
let

n = if (f or res) then ini
else c + inc;

f = true fby false;
c = 0 fby n;

tel

node d_integrator(gamma: int)
returns (speed, position: int)
let

speed = counter(0, gamma, false);
position = counter(0, speed, false);

tel

node tracker(acc, limit: int) returns (p, t: int)
var s, pt : int; x : bool; c : int when x;

let

(s, p) = d_integrator(acc);
x = rising(s > limit);
c = counter(0 when x, 1 when x, false when x);
t = merge x c (pt whenot x);
pt = 0 fby t;

tel

Figure 3. SN-Lustre: example program.

by fbys which must be read before they are written with their
next value.

Normalization and scheduling change the syntactic form
of a program but preserve its dataflow semantics. Normaliza-
tion is allowed because Lustre is referentially transparent: a
variable can always be replaced by its defining expression and
conversely. Scheduling is allowed because the meaning of a
set of equations is independent of their order. The normalized
and scheduled example appears at left in Figure 3.

Both normalization and scheduling were verified in Coq
in prior work [2, 3]. We do not dwell on them here but rather
focus on the problems that were not previously addressed. We
elaborate directly to N-Lustre and apply a formally validated
scheduling algorithm to produce SN-Lustre.

Returning to Figure 1, the first of these problems is the
translation from SN-Lustre to the intermediate imperative
language Obc [8, §4]. This pass changes both syntax and
semantics: from dataflow equations defining functions on
streams to sequences of imperative assignments defining tran-
sitions between memory states. Examples of Obc programs

are given in Section 3, where we detail the translation pass
along with the statement and proof of its correctness.

The translation pass produces a nesting of conditional
statements for each equation in the source program. This fa-
cilitates compiler specification and proof but gives inefficient
code. A fusion optimization is thus normally applied to merge
adjacent conditionals. Its specification and verification are
detailed in Section 3.3.

The second significant problem addressed in our work is
the generation of compilable code, typically C, Java, or Ada,
from Obc. In our work we generate Clight, a subset of C
accepted by the CompCert compiler, whose compilation to
assembly code has been modeled and verified in Coq [10, 40].
This requires incorporating a subset of Clight’s types and
operators into SN-Lustre programs. We exploit the module
system of Coq to abstract over the details until the generation
pass where they are instantiated with Clight-specific defini-
tions. The generation pass makes only minor alterations to
the control structure of a source Obc program, namely to
support multiple return values. More significantly, it changes
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the representation of program memories. The state of Obc
programs is a tree of variable environments. It must be en-
coded as nested records in the target Clight program, and the
concomitant details of alignment, padding, and aliasing must
be confronted. The generation pass is described in Section 4.

Our prototype compiler implements the languages in the
gray boxes and the transformations marked by solid arrows
in Figure 1. The lexer is generated by ocamllex [42, §12].
The parser is generated in Coq by Menhir [53] which also
produces proofs of correctness and completeness [36]. The
elaborator is a mix of OCaml, mostly from CompCert for
parsing constants, and Coq, it rejects programs that are
not normalized. We prove using standard techniques that
successful elaboration yields a well-typed and well-clocked
N-Lustre program. Scheduling is implemented in OCaml and
validated in Coq. The translation and generation algorithms
are implemented as Coq functions and extracted to OCaml.
We generate a Clight AST that CompCert’s formally verified
or validated algorithms compile into assembly code.

2.2 SN-Lustre, Node instantiation, and Sampling

The abstract syntax of SN-Lustre is given in Figure 2. Many
of the elements have already been presented. We now de-
scribe node instantiation and the constructs for sampling and
merging streams via the extended example of Figure 3.

The counter node is the normalized and scheduled ver-
sion of the earlier example. The d_integrator node [28, II(C)]
instantiates counter twice to calculate speed and position val-
ues from a stream of accelerometer readings. It is itself in-
stantiated in the tracker node that returns the position and
a count of the number of times that the speed exceeds a
given limit. The instants of overshoot are detected as rising
edges (rising(in) = ((false fby not in) and in) on the expres-
sion s > limit. Consider the values of the streams in this node
for a given acc and with limit a constant stream of 5s:

acc 0 2 4 -2 0 3 -3 2 · · ·
limit 5 5 5 5 5 5 5 5 · · ·

s 0 2 6 4 4 7 4 6 · · ·
(sc) 0 0 2 6 4 4 7 4 · · ·
p 0 2 8 12 16 23 27 33 · · ·

(pc) 0 0 2 8 12 16 23 27 · · ·
x F F T F F T F T · · ·
c 1 2 3 · · ·

(cc) 0 1 2 · · ·
t 0 0 1 1 1 2 2 3 · · ·
pt 0 0 0 1 1 1 2 2 · · ·

The values of s and p are ultimately defined by counter

instances with a value at every instant; the variables defined
within the instances by c = 0 fby n are denoted (sc) and (pc).

The when construct samples a stream and controls the ac-
tivation of program elements. The effect of sampling the
constant streams in the definition of c is to activate the
counter node at a slower rate than its context. In contrast,

counter(0, 1, false) when x activates counter at every instant
and samples the result. The value of c is the stream 1, 2, 3, . . . ;
its synchronization with the other streams, giving the gaps
in the table, is captured by the clock base onx, which is de-
clared in the type/clock annotation ‘: int when x’ in Figure 3.
Similarly, the expression pt whenot x samples pt when x is
false. Its clock is base onotx.

The merge construct combines complementary streams
according to the clock given as the first argument. Together
with the fby defining pt, its effect here is to sustain the value
of t between excess speed events. A set of clock typing
rules [19] allows clocks to be inferred by the compiler
and ensures that well-clocked programs can be executed
synchronously, that is, without additional buffering. These
details are not central to our approach; it is only important to
note that every equation is associated with a clock having the
hierarchical structure shown in Figure 2.

The normalization pass ensures that merges and ifs only
occur at the top level of expressions that do not contain
fbys or node instantiations. The structural invariants given
by normalization are captured in the abstract syntax by the
three specific forms of equations, and the distinction between
control expressions and expressions.

The simple example of Figure 3 was chosen for reasons of
space and clarity. But just as the concision of the λ-calculus
belies its expressiveness and utility, so too is the simplic-
ity of Lustre misleading. It and the underlying formalism
of difference equations forms the core of the Scade 6 lan-
guage which is used to program complex and critical discrete
controllers. It also suffices to model distributed embedded
controllers [5, 14, 27], and to encode automata [20, 44, 45],
temporal logic [31], regular expressions [58], and numeri-
cal simulations [6, 7]. We aim to provide a solid base to
manipulate and reason about such applications in an ITP.

Differences with ‘classical’ Lustre. In addition to ini-
tialized registers (fbys) [64], Lustre [13] provides distinct
initialization (−>) and delay operators (pre). Initializa-
tion is readily expressed in SN-Lustre: x −> y becomes
if (true fby false) then x else y. While pre is not fundamen-
tally more expressive than fby [13, §3.2], its use sometimes
gives more pleasing programs but requires a static analysis to
check that it is used correctly (initialization analysis).

The merge operator [54] supersedes the current operator,
whose value before the arrival of its input is undefined. It
allows syntactic clock typing and is readily generalized for
the compilation of case structures and automata [20]. Scade 6
uses merge and provides fby. Simulink provides counterparts
for when (‘conditionally-executed subsystems’ [46, p.4-26])
and merge (‘Merge’ [47]).

For simplicity, we require all inputs and outputs of a node
application to have the same clock; in Lustre the inputs and
outputs may be on sub-clocks of the clock of the first input.
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e := expression

| x (local variable)
| state(x) (state variable)
| c (constant)
| ⋄ e (unary operator)
| e⊕ e (binary operator)

s := statement

| x := e (update)
| state(x) := e (state update)
| if e then s else s (conditional)
| ⇀x := ci.m(⇀e ) (method call)
| s; s (composition)
| skip (do nothing)

cls := class declaration

| class c {

memory
⇀
xty

instances
⇀
ic

(
⇀
xty) m(

⇀
xty) = var

⇀
xty in s · · ·

}

Figure 4. Obc: abstract syntax.

2.3 Intermediate Code: Translation and Generation

In the clock-directed modular approach, compilers typically
generate imperative code in an object-based intermediate lan-
guage. The idea is to encapsulate the memory required to
implement a dataflow node with the code generated to manip-
ulate it. The object style is a natural way of describing and
reasoning about the translation, and the use of an intermediate
language facilitates the code generation for different targets
by separating generic transformations from language-specific
details [8, §4].

It turns out that this approach is also advantageous for
formal verification because it separates the task of reasoning
about the translation between the dataflow and imperative
models from that of reasoning about the packing of bytes into
machine memory. The invariants needed for each task differ
in purpose and form. Translating directly from SN-Lustre to
Clight would eliminate the need to define and reason about
the syntax, semantics, and properties of the intermediate
language, but this advantage is greatly outweighed by the
inevitable increase in complexity of the generation function
and associated invariants and proofs.

It also turns out to be more convenient to define and verify
control structure optimizations in the intermediate language.

We adopt the intermediate language Obc [8, §4], which
resembles the SOL language used for the same purpose
in the SCADE Suite compiler. It is a fairly conventional
imperative language with a simple means of encapsulating
state. The abstract syntax is presented in Figure 4. There are
two noteworthy features. First, a distinction is made between
variables x and memories state(x) in both expressions (reads)
and update statements (writes). Second, a program is a list
of classes and each class comprises lists of typed memories,
named instances of previously declared classes, and named
methods. Each method m declares—from left to right in
Figure 4—lists of output, input, and local variables, and
is defined by a statement s that may access and update
those variables and the memories. A method call specifies
a class c, a declared instance i, and a method m: a list of
expressions gives its inputs and a list of distinct variable
names is nominated to store the returned values.

The basic principle of the translation pass (Figure 1) is
to turn each dataflow node into an imperative class where a
memory is introduced for each variable defined by a fby and
local variables are used for other equations and node inputs,

and an instance is introduced for each node call. Two methods
are defined for each node: reset to initialize memories and
instances, and step to calculate the next single instant, that is,
a ‘column’ of the semantic table. Calling reset initially and
then repeatedly calling step calculates the successive values
of the dataflow streams. We give examples of Obc programs,
and describe the translation pass and its correctness proof in
the next section.

The generation of Clight from Obc involves introducing
a record type for each class to store memories and instances,
producing a function for each class/method pair, encoding
multiple return values using records and pointers, and deal-
ing with various technicalities of the detailed machine model
exposed to C programs. We describe this pass and its correct-
ness proof in Section 4.

We obtain the full compilation chain, from N-Lustre to
assembly, by composing our compiler with CompCert and,
similarly, we prove the end-to-end correctness theorem by
composing the respective correctness lemmas.

3. Translation to Obc

The translation pass is specified as a functional program in
Coq. It maps a list of SN-Lustre nodes into a list of Obc
classes. Most of the translate function is shown in Figure 5.
The trnode function is not shown for want of space. It
calculates a set mems of variables defined by fbys, uses it to
partition declarations of node variables into declarations of
class memories and the local variables of the step method,
and defines the bodies of the step and reset methods using
treqss and treqsr, respectively. We show that if the source
program is well-typed then so is the resulting program.

Consider now the other auxiliary functions. The function
var maps a dataflow variable into a local or state variable
based on its membership in mems. Expressions are otherwise
translated by trexp, which propagates constants and operators,
and removes whens. The cases for e whenot x and ⋄ e are
not shown being easily deducible. Unlike trexp which maps
an SN-Lustre expression into an Obc one, trcexp maps a
variable and expression into an update statement. Only the
case for merge is shown, the case for if/then/else is identical.

The ctrl function embodies the principle that clocks in the

source language are transformed into control structures in the

target language [8], by following the structure of a clock ck

to nest a statement s in conditional tests. It is applied for
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varx ,

{

state(x) if x∈mems

x if x /∈mems

trexp c , c

trexp x , var x

trexp (e when x) , trexp e

trexp (e1 ⊕ e2) , (trexp e1)⊕ (trexp e2)

trcexpx (merge y et ef ) , if (var y) then (trcexp x et)
else (trcexp x ef )

trcexpx e , x := trexp e

ctrl base s , s

ctrl (ck on x) s , ctrl ck (if (var x) then s else skip)

ctrl (ck onot x) s , ctrl ck (if (var x) then skip else s)

treqs (x =ck ce) , ctrl ck (trcexp x ce)

treqs (x =ck c fby e) , ctrl ck (state(x) := trexp e)

treqs (x : xs =ck f(es)) ,

ctrl ck (x : xs := fx.step(map trexp es))

treqss eqns , foldl (λ acc eqn. treqs eqn; acc) eqns skip

treqr acc (x =ck ce) , acc

treqr acc (x =ck c fby e) , state(x) := c; acc

treqr acc (x : xs =ck f(es)) , fx.reset(); acc

treqsr eqns , foldl treqr eqns skip

translatenodes , map trnode nodes

Figure 5. Core of the SN-Lustre to Obc Translation.

each of the three cases in treqs: definitions become updates,
delays become state updates, and node calls become calls
to the (previously generated) step method for the associated
node. The last case requires a way to identify this particular
instance: we choose to use the left-most return variable, which
is guaranteed to be unique within the node.

The step method is generated by folding treqs over the list
of equations.4 Similarly, reset is generated with treqr map-
ping delays into state updates, and node calls into invocations
of the reset method for the associated instances.

The step and reset statements for the example tracker node
are shown below at left and right:

s, p := d_integrators.step(acc);
x := risingx.step(s > limit);
if x then c := counterc.step(0, 1, false)

else skip;
if x then t := c else t := state(pt);
state(pt) := t;
skip

d_integrators.reset();
risingx.reset();
counterc.reset();
state(pt) := 0;
skip

While the translation function is succinct, the formal jus-
tification of its correctness is not! We must define semantic

4 treqss expects equation lists in the reverse order to that used in Figure 3.

(c hold
#
xs)(0) = c

xs(n) = 〈c′〉

(c hold
#
xs)(n+1) = c′

xs(n) = abs

(c hold
#
xs)(n+1) = (c hold

#
xs)(n)

xs(n) = abs

(c fby
#
xs)(n) = abs

xs(n) = 〈c′〉

(c fby
#
xs)(n) = 〈(c hold

#
xs)(n)〉

Figure 6. Definition of the fby
# operator.

models for SN-Lustre and Obc, and show a theorem describ-
ing how the translate function preserves the observable be-
havior of source programs. We also find it necessary to intro-
duce a third semantic model to facilitate the proof. We outline
the models and proof before describing the optimization of
translated step methods.

3.1 Semantic Models

Dataflow. The semantic model of SN-Lustre is a specifica-
tion for the compilation chain. It must correspond with exist-
ing formal but unmechanized definitions of the language [13,
§3.2][19, §3] and permit effective reasoning within an ITP.

The first important choice is the representation of streams.
Earlier work [2, 3] used lists, but their extrapolation to infinite
objects is not simple and they engender uninteresting proof
obligations—for instance, for the empty list or to argue that
two streams are of equal length. Coinductive streams are
a more natural choice but their use in ITPs can involve
nontrivial technicalities [18, §5]. We thus model streams
as functions from natural numbers to a value domain. The
nth value of a stream s is denoted by s(n). This choice worked
well; time was treated by induction on the index argument (n)
and our proofs encountered the expected obligations in the
expected forms, without tedious additional technicalities.

The next choice is how to handle the sampling operators;
that is, how to model the gaps in the table shown earlier. In
a Kahn semantics [37, 51], these gaps are simply omitted,
but in a synchronous semantics they express the timing
of calculations relative to the underlying iterations of the
system. We model them by explicitly encoding presence (〈c〉)
and absence (abs) in the value domain. On one hand, this
complicates the definition of fby, see Figure 6, which can
no longer be encoded by simply prefixing the initial value
to the argument stream. Rather the argument stream must
‘slide to the right’ over the absent gaps which remain fixed
in place; this is what the auxiliary hold operator encodes. On
the other hand, it allows the explicit manipulation of presence
and absence in invariants and proofs.
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The dataflow semantics is standard [13] and defined in
two parts: a combinational fragment over values at an in-
stant and a sequential fragment over streams. The combina-
tional judgments are relative to a pair (R, b) of an instanta-

neous environment R mapping variables to present or absent
values, and a boolean b that indicates whether the enclos-
ing node is active in the instant. There are judgments for
variables (R⊢var x ⇓ v), clocks (R⊢b

ck ck ⇓ b′), expressions
(R⊢b

e e ⇓ v), clocked expressions (R⊢b
e e :: ck ⇓ v), control

expressions (R⊢b
ce ce ⇓ v), and clocked control expressions

(R⊢b
ce ce :: ck ⇓ v).
The sequential judgments are defined relative to a history

environment H that maps each variable to a stream of val-
ues, and a base clock bk that is a stream of boolean values
representing the base clock of the enclosing node. History
environments essentially encode the kind of semantic table
shown earlier, each variable name is mapped to a row giving
its values over time. Since nodes can be conditionally acti-
vated, the semantics of equations is specified with respect to
a base clock that indicates when the enclosing node is active.

A mutually inductive definition simultaneously defines the
semantics of equations and nodes. The semantic judgment
for delay equations integrates the fby

# of Figure 6:

H ⊢bk
e e :: ck ⇓ ls H ⊢var x ⇓ xs xs = c fby

#
ls

G,H ⊢bk
eqn x =ck c fby e

That is, an equation x =ck c fby e has a semantics in a
program G, a history environment H , and for a base clock bk ,
if the semantics of e is a stream ls and the value of x in H is
a stream xs that is a delayed version of ls with initial value c.

The semantics of a node f in a program G relates a
stream of input values ⇀xs to a stream of output values ⇀ys .
The semantic judgment requires the existence of a history
environment whose projections on the input and output
variables correspond with ⇀xs and ⇀ys , respectively, and which
is satisfied by the equations in the node ⇀eqn:

(

node f (
⇀
iti) returns

⇀
oto

var
⇀
vtv let ⇀eqn tel

)

∈ G

∀n,⇀xs (n) = abs ⇔ ⇀ys (n) = abs

bk = clock
# (hd⇀xs)

G,H ⊢bk
eqn

⇀eqn

H ⊢var
⇀ı ⇓ ⇀xs

H ⊢var
⇀o ⇓ ⇀ys

G⊢node f(
⇀xs ,⇀ys)

This judgment embodies two key properties. First, the streams
of an instantiated node are only activated when the inputs ⇀xs
are present since the base clock bk is derived from those in-
puts: (clock# x)(n) , if x(n) = abs then F else T . Second,
we require that the clocks of the inputs ⇀xs and the outputs ⇀ys
are synchronized.

Imperative. Obc is essentially a conventional imperative
language and the formalization of its semantics in an ITP
is routine. The only idiosyncrasy is in the treatment of
instance memories. Expressions and statements read and
update, respectively, pairs of memory environments. A local

memory (env ) models a stack frame, (partially) mapping
variable names to values. A global memory (mem) models a
static memory that contains two (partial) mappings, variable
names to values and instance names to sub-memories. Its
type is parameterized by a domain of values V and defined
as a recursive record with two fields:

memoryV ,

{

values : ident⇀V
instances : ident⇀memory V

}

The memory of a program compiled from SN-Lustre reflects
the tree of nodes in the source code: there is an entry in
values for each fby and one in instances for each node call.
The subscript in the step and reset calls associates an instance
of a node with its sub-memory.

We define a big-step semantics for Obc. The semantic
judgment for a statement s in the context of a program prog

relates initial and updated memory pairs. For example, the
rule for updates is:

mem, env ⊢e e ⇓ v

mem, env ⊢st x := e ⇓ mem, env ∪ {x 7→ v}

That is, after executing x := e the global memory is un-
changed and the x is updated in the local memory with
the value v given by the expression semantics. The rule for
state updates is the same but for updating mem.values. A
method call evaluates the argument expressions in the initial
memory mem , looks up the class name in prog , and exe-
cutes its step statement relative to a smaller prog ′, a global
(sub-)memory retrieved from mem.instances, and a local
memory that associates inputs to their values. The instance
memory and result variables are then updated.

Executing an Obc program reads inputs from, and cal-
culate results in, a top-level environment env , and updates
internal memories mem for subsequent re-executions.

3.2 Correctness

The correctness of the translation pass is simple to state:
if a node f of a dataflow program G maps the streams of
inputs ⇀xs to the streams of outputs ⇀ys , then, in translate G,
first executing the associated reset method before repeatedly
executing the associated step method with the successive
values of ⇀xs generates the successive values of ⇀ys .

The formal statement of this property requires predicates
expressing that the equations within each node of G are
correctly scheduled and that nodes are not applied circularly.
These properties are assured by elaboration and scheduling.

The resulting statement is too weak to prove directly.
The semantic judgment G⊢node f(

⇀xs ,⇀ys) only describes the
input/output behavior of a node. The values of internal
streams, like cc, sc and pc in the example, are hidden and,
unlike Obc memories, these streams may not necessarily have
a value at each instant. These facts prevent the formulation
and proof of the invariant needed to show correctness. We
solve this problem by introducing a new semantic model that
combines aspects from the dataflow and imperative models.
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MemCorresEqnn(M,mem, x =ck e)

(M.values(x))(n) = mem.values(x)

MemCorresEqnn(M,mem, x =ck v0 fby e)

MemCorresfn(M.instances(x),mem.instances(x))

MemCorresEqnn(M,mem, x : xs =ck f(⇀e ))

Figure 7. SN-Lustre/Obc memory correspondence.

An intermediate model with exposed memory. The new
semantic judgment has the form G⊢mnode f(

⇀xs ,M,⇀ys). It
exposes a memory tree M whose structure is isomorphic to
the tree of instances in the dataflow and translated imperative
programs. Unlike in the Obc semantics, the domain V for
memory is not instantiated by single constant values but
rather by streams of constant values. For each variable x
defined by a fby in the source program at any level of the call
hierarchy, it specifies the sequence of values that should be
taken over successive iterations by the corresponding state(x)
in the translated code.

In defining the new model, we reuse the instantaneous
semantic rules for expressions. The rules for nodes, ordinary
equations, and node calls are redefined almost trivially. The
new rule for fbys is the only really interesting one:

ms = M.values(x)
ms(0) = v0

H ⊢bk
e e :: ck ⇓ ls

H ⊢var x ⇓ sx

∀n,

{

ms(n+1) = ms(n) ∧ sx (n) = abs if ls(n) = abs

ms(n+1) = v ∧ sx (n) = 〈ms(n)〉 if ls(n) = 〈v〉

G,M,H ⊢bk
meqn x =ck v0 fby e

The stream ms corresponding to the memory for the
variable x is retrieved from M.values. Initially, it takes the
value v0. At later instants, its value is maintained if the
argument stream is absent; otherwise its next value is the
value present on that stream. The stream sx associated with x
is absent when the argument is and otherwise present with
the current value of the memory. The behavior of this model
is intentionally very close to that of the translated code.

If a node has a semantics, we show that it also has a
semantics with exposed memories.5 In practice, this permits
us to reason about memory values in the proofs of properties
stated solely in terms of the standard dataflow semantics.

With a node memory M exposed, it becomes possi-
ble to relate it directly to a global memory mem at an
instant n. This relationship is expressed in the predicate
MemCorresfn(M,mem) where G is implicit. The predi-
cate requires that each equation for the node f in G satisfy
MemCorresEqn, Figure 7, which holds trivially for basic
equations, and is otherwise defined directly for delays and
recursively for node applications.

5 Formally, G⊢node f(
⇀
xs ,⇀ys) implies ∃M,G⊢mnode f(

⇀
xs ,M,⇀ys).

Proof of translation. The correctness of the nth execution
of a translated step method is stated for a well-scheduled
program G in terms of the semantics that exposes memories.

LEMMA 1. Given G⊢mnode f(
⇀xs ,M,⇀ys) for a node f in G,

a global memory mem where MemCorresfn(M,mem) at an

instant n, then there is a global memory mem′ such that

mem ⊢step r := fr.step(⇀xs (n)) ⇓ mem ′,⇀ys (n)
and MemCorresfn+1(M,mem ′),

where we execute f’s step statement in translate G using the

semantics of Obc method calls.

This lemma is shown by three nested inductions: over in-
stants n, node definitions in G, and equations eqns within
a node; and two case distinctions: on the three classes of
equations, and whether the associated clock is true or not.
Together with a lemma showing that fr.reset() establishes
MemCorresf0 (M,mem0 ), it implies the correctness result.

The formal proof is not trivial. The most subtle case is for
node applications whose clock is false: since the associated
imperative function is not executed we cannot appeal to the
induction hypothesis on G and must reason that the instance
memory does not change in this case.

Lemma 1 involves showing that an imperative step has a
semantics. While Obc programs cannot diverge by construc-
tion, we must ensure that they do not ‘get stuck’. We rely on
scheduling to guarantee that local variable reads succeed, on
MemCorres to guarantee that state variable reads succeed,
and on the existence of the dataflow semantics to show that
operators are always defined. The last point is subtle but im-
portant: it entails an obligation to verify that source programs
apply operators correctly.

3.3 Fusion Optimization

Translation generates code with too many guards, so an opti-
mization pass is normally used to fuse adjacent conditionals.6

For example, the step code for tracker becomes:
s, p := d_integrators.step(acc);
x := risingx.step(s > limit);
if x then (c := counterc.step(0, 1, false); t:= c)

else t := state(pt);
state(pt) := t

This optimization is effective as scheduling places similarly
clocked equations together. We define it over two functions.
The first simply divides sequential compositions in two:

fuse (s1; s2) , zip s1 s2
fuse s , s

The zip function is shown in Figure 8.7 It iteratively inte-
grates statements from its second argument into the first and
recursively performs the optimization.

6 Incorporating this optimization into the translation pass would complicate
both compilation and proof. In particular, the induction along the list of
equations would need to track and manipulate the ‘open’ if/else constructs.
7 The Coq version is broken into three pieces to make termination manifest.
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zip (if e then s1 else s2) (if e then t1 else t2)

, if e then zip s1 t1 else zip s2 t2
zip (s1; s2) t , s1; (zip s2 t)

zip s (t1; t2) , zip (zip s t1) t2
zip s skip , s

zip skip t , t

zip s t , s; t

Figure 8. Obc optimization: loop fusion.

While the first rule of zip does not preserve the semantics
of s1; s2 in general,8 it does for the code produced by
the translate function. To prove this, we must characterize an
invariant that assures soundness, show that it holds of code
produced by translate, and also that it is preserved by the
successive transformations of fuse. We formalize a predicate
Fusible over statements whose only non-trivial rule is

Fusible(s1) Fusible(s2)

∀x ∈ Free(e),¬MayWrite(x, s1) ∧ ¬MayWrite(x, s2)

Fusible(if e then s1 else s2)

where MayWrite(x, s) is true iff s contains an assignment
to x or state(x). The justification that this predicate holds re-
quires a subtle technical argument about well-formed clocks
in SN-Lustre programs.

We prove that fuse preserves Fusible by showing that it is
a congruence for the relation s1 ≈fuse s2 that relates fusible
statements that transform memory states identically.

As the treatment of fusion demonstrates, proving the
correctness of optimizations may require reasoning across
the whole framework, from the semantics of dataflow clocks,
across the details of the translation function, and finally over
equivalence relations on the imperative code.

4. Generation of Clight

The generation pass takes an Obc program, for instance, one
produced by translation from SN-Lustre, and generates a
Clight program for compilation by CompCert.

Generation treats the Obc classes in a program one by one.
A record is declared for each with fields for every memory
and instance. Another record is declared for each method
with fields for the output variables. This is necessary since
Obc allows multiple return values but Clight does not. We
optimize the special cases of zero or one output. The records
generated for the example tracker class are:

struct tracker {
int pt;
struct d_integrator s;
struct rising x;
struct counter c;

};

struct tracker$step {
int p;
int t;

};

8 Consider (if x then x:= false else x := true); if x then · · · else · · ·.

void tracker$step(struct tracker ∗self,
struct tracker$step ∗out,
int acc, int limit)

{
struct d_integrator$step out$s$step;
register int step$n, s, c;
register bool step$edge, x;

d_integrator$step(&(∗self).s, &out$s$step, acc);
s = out$s$step.speed;
(∗out).p = out$s$step.position;

step$edge = rising$step(&(∗self).x, s > limit);
x = step$edge;

if (x) { step$n = counter$step(&(∗self).c, 1, 1, 0);
c = step$n; (∗out).t = c; }

else { (∗out).t = (∗self).pt; }

(∗self).pt = (∗out).t;
}

Figure 9. Clight step method for the tracker node.

A separate function is generated for each class/method pair.
Figure 9 shows the result for tracker/step. Two additional pa-
rameters precede the method inputs: self is a pointer to an
instance memory and out is a pointer to memory for returning
output values. Within the function, auxiliary variables are
introduced for every invoked class/method to retrieve outputs,
and for every local and output variable declared in the source
method. Method calls are translated into calls to previously
generated functions with two new argument values: an in-
stance memory retrieved from self and, when necessary, an
output record. A sequence of assignments is added after each
call to copy from the auxiliary variable into local and output
variables. These new assignments aside, the control structure
of the source statement is reproduced exactly in the gener-
ated code. In expressions, variables are either translated into
member accesses within out or self, or directly as registers,
and constants and operators are propagated directly.

We do not detail Clight’s abstract syntax or the generation
function. The former is described elsewhere [9, Figures 1,
2, and 3]. The latter is similar to the translate function
of Section 3, although its definitions are more intricate since
they must treat the low-level details inherent to Clight.

There are both big-step and small-step operational seman-
tics for Clight. We reason about the correctness of generation
in the big-step model since Obc methods always terminate
and since their control structure is essentially preserved in the
resulting code. We need not invoke CompCert’s framework
for simulation proofs; we simply proceed by induction on
arbitrary Obc statements.

The big-step judgment for a Clight statement is written:

ge, e ⊢stmt le,m, s
t
=⇒ le ′,m′, oc

594



val, type, const, unop, binop : Type

bool : type true, false : val ⊢wt : val → type → Prop

tyc : const → type

semc : const → val

tyuop : unop → type ⇀ type

semuop : unop → val → type ⇀ val

tybop : binop → type → type ⇀ type

sembop : binop → val → type → val → type ⇀ val

Figure 10. Operator interface: values.

A statement s is executed in a global environment ge that
tracks global variable, function, and type declarations, and
a local environment e that maps (local) variable names to
their addresses and types. It may read and alter values in
a temporaries environment le and a memory m to produce
updated versions le ′ and m′, a trace of observable events t,
and an outcome oc. Memories map addresses—that pair
abstract block identifiers with integer offsets—to byte-level
values and abstract permissions [41][1, §32]. In contrast to a
local environment, a temporaries environment maps variable
names to values directly. The address-of operator (&) is only
allowed for variables in e but reasoning about variables in le

is easier because there is no indirection or aliasing.
We generate code that places the output blocks in e , since

we must pass their addresses in function calls, and the other
variables in le—denoted by the register keyword in Figure 9.
The semantic models can be instantiated to store function
parameters in e or in le; we choose the latter.

Reasoning about the generation pass presents two main
technical challenges: integrating types and operators from
Clight into Obc and SN-Lustre (Section 4.1), and reasoning
in the memory model to relate the tree-like memorys of Obc
to nested structs in the generated code and to handle multiple
return values (Section 4.2). The solutions are applied to obtain
the correctness result (Section 4.3).

4.1 Abstracting and Implementing Operators

The definitions and proofs about SN-Lustre, Obc, and the
translation pass are defined relative to an operator interface.
Technically, we define the operator interface as a module type
and the other components as functors over that type.

Figure 10 presents most of the interface. There are types
for values (val), value types (type), constants (const), unary
operators (unop), and binary operators (binop). We require
that type contain an element bool and that val contain two
elements true and false. There is a typing judgment (⊢wt) and
(partial) functions that map constants and operators to their
types and values.

The bool type and values are distinguished because they
are required to define the semantics of sampling, merges,
muxs, and clocks in SN-Lustre, and of conditionals in Obc.

Figure 10 omits the properties required of interface ele-
ments, namely true 6= false, ⊢wt true : bool, ⊢wt false : bool,

⊢wt semc c : tyc c, and two type preservation properties. The
type preservation property for unary operators (⋄) is:

(tyuop ⋄ ty) = ty ′ ⊢wt v : ty (semuop ⋄ v ty) = v′

⊢wt v
′ : ty ′

The property for binary operators (⊕) is similar.
Our compiler from SN-Lustre to Obc can thus be instan-

tiated to any suitable language or for different variations of
a given language. Here we instantiate it with CompCert’s
values and semantics so as to compose both compilers.

Instantiating the interface. The operator interface must be
instantiated with parts of CompCert’s front-end [9, 10] for
the implementation and verification of the generation pass.
We instantiate val with the type of CompCert values, and type

with a subset of Clight types comprising integer, boolean, and
floating-point types (but not pointers, arrays or structs). We
reuse CompCert’s dynamic semantics and type system almost
directly. We do, however, impose stricter typing rules than
those of C concerning Boolean values (to ensure that the only
values of type bool are the integers 0 and 1) and implicit casts
in assignments (we require explicit casts when assigning an
expression to a variable of a different type). These stricter
typing rules, applied at the level of the Obc and SN-Lustre
type systems, simplify the proof of semantic preservation
from Obc to Clight. They ensure correspondence between
updates in Obc that store values directly and assignments in
Clight that involve implicit casts.

4.2 Relating Memories

The correctness of the generation pass hinges on a lemma
that shows the invariance of the assertion

m |= match_states c f mem env e le (bself , sofs) bout

that, for a given class c and method f , relates the Obc
memories mem and env to the Clight environments e and le ,
and the state record at address (bself , sofs) and output record
at address (bout , 0) in the Clight memory m.

In essence, this predicate describes —at a logical level—
the layout of the Clight memory, following the idealized
memory of the Obc program. By ensuring this invariant, our
compiler is guaranteed to generate memory-safe code. We
explain its most salient parts in the remainder of this section.

Separation assertions. Expressing and reasoning about the
internal components of match_states involves treating the
contents of m with all the concomitant details of alignment,
padding, and aliasing. For example, when an Obc method
updates a state element, state(pt) := t, we must show for
the generated code, (∗self).pt = (∗out).t, that the address
self + offsetof(struct tracker, pt) is properly aligned for the
field type, that there is enough space to write a value of
that type, and that other fields, or indeed, all other memory
locations, are unchanged.
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staterep [] f mem (b, ofs) , sepfalse

staterep (class g {
⇀
mtm

⇀
ic · · ·} : p) f mem (b, ofs) , staterep p f mem (b, ofs) if g 6= f

staterep (class f {
⇀
mtm

⇀
ic · · ·} : p) f mem (b, ofs) ,

sepall
(

λxty . contains ty (b, ofs + field_offset(x, {
⇀
mtm ·

⇀
ic })) ⌈mem.values⌉x

) ⇀
mtm

∗ sepall
(

λxcx . staterep p cx mem.instances(x) (b, ofs + field_offset(x, {
⇀
mtm ·

⇀
ic }))

)⇀
ic

Figure 11. The staterep function yields a memory assertion, for a class named f , comparing the Clight memory in block b at
offset ofs against the contents of an Obc global memory mem . Note that ⌈f⌉x ,

(

λv. f x is undefined ∨ f x = v
)

.

Separation logic [33, 59] is designed to solve such prob-
lems and we apply it in our proof. More precisely, we exploit
the basic concepts and standard connectives to express and
reason about assertions on memory, but we do not use it as
a variant of Hoare logic. We considered using the Verified
Software Toolchain (VST) [1] in our formalization, but it
focuses on proofs of particular programs whereas we prove
properties about a function that produces programs. The VST
also includes many sophisticated features that we do not need.
Instead, we extend a small library of separation assertions
that was already developed within CompCert for reasoning
about stack frames.

A memory assertion is a dependent record with two main
elements: mfoot, a declared memory footprint (represented
as a predicate over block/offset pairs), and mpred, a predicate
over memories; and two technical obligations to ensure that
mpred only refers to memory elements of mfoot. Separating
conjunction (∗) is defined, for instance, as:

p ∗ q ,







mfoot = λb ofs. mfoot p b ofs ∨ mfoot q b ofs
mpred = λm. mpred p m ∧ mpred q m

∧ disjoint (mfoot p) (mfoot q)







The notation m |= p is just another way to write mpred p m.
We define the standard assertions and connectives, including
separating implication (−∗) similarly. This differs from mech-
anizations that follow the standard approach [33, 59] of first
constructing a separation algebra over ‘heaplets’ [1, 39]. It
works well in practice for assertions that only use quantifiers
in simple ways.

State representation. The trickiest part of match_states

is an assertion that represents the layout of the nested state
record: m |= staterep p f mem (b, ofs), relating a list of Obc
classes p, the name of a class f, an Obc global memory mem ,
and a piece of Clight memory in m starting at address (b, ofs).
The hierarchical Obc run-time state provides the blueprint for
the nested Clight run-time state.

The assertion is defined as a Coq function by the three
clauses shown in Figure 11. The function returns sepfalse

for the empty program and skips over classes that are not
named f. The last clause is the interesting one. When the class
named f is found, the memory is separated into two disjoint
regions: one for the memory fields

⇀
mtm and one for the

instance fields
⇀
ic . Each region is further divided by iterating

a predicate over the fields using the sepall combinator:

sepall p xs , foldl
(

λps x. ps ∗ p x
)

xs emp

The predicate for memories uses contains ty (b, ofs) spec
to assert that spec holds over the memory in block b in the
range [ofs, ofs + sizeof(ty)).9 Clight’s field_offset gives the
offset of a field in the generated record. The memory range
must contain the value mem.values(x) if it is defined and is
unconstrained otherwise. In either case, the predicate asserts
that the memory exists, that it can be read and written, and that
it is disjoint from that of other fields (and any other assertions
at higher levels). The predicate for instances applies staterep

recursively for each instance/class pair.
The Clight memory model requires that the ownership

of local memory, like that allocated for the output records,
be explicitly surrendered when a function returns. Since the
sepall assertions only retain access to the field memory and
not to inter-field padding, match_states includes separating
implications that allow field access to be exchanged to recover
ownership of the original block of memory.

We obtain the correctness result by showing that each
generated operation preserves match_states.

4.3 Proof of Generation

The core of the correctness proof shows invariance of
match_states between an arbitrary Obc program and the
Clight program generated from it. The proof proceeds by
induction on the former; it is long and contains many tech-
nicalities. The semantics of operators is the same in both
languages and implicit casts are justified using the type sys-
tem sketched in Section 4.1. The separation assertions relate
local and state variables to their implementations in Clight,
we reason about them using standard techniques (associativ-
ity and commutativity of ∗, and rules for loading and storing).
The instance predicates in staterep ‘detach’ for access to the
induction hypothesis for method calls, which includes an
arbitrary separation assertion (invariant ∗ P ) that serves as
an ersatz frame rule.

A main function is generated to call the principal reset

method initially, and the principal step method repeatedly.

9 Similarly to the standard e 7→ e′ assertion [33, 59].
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Vélus Hept+CC Hept+gcc Hept+gcci Lus6+CC Lus6+gcc Lus6+gcci

avgvelocity 315 385 (22%) 265 (-15%) 70 (-77%) 1 150 (265%) 625 (98%) 350 (11%)

count 55 55 (0%) 25 (-54%) 25 (-54%) 300 (445%) 160 (190%) 50 (-9%)

tracker 680 790 (16%) 530 (-22%) 500 (-26%) 2 610 (283%) 1 515 (122%) 735 (8%)

pip_ex 4 415 4 065 (-7%) 2 565 (-41%) 2 040 (-53%) 10 845 (145%) 6 245 (41%) 2 905 (-34%)

mp_longitudinal [16] 5 525 6 465 (17%) 3 465 (-37%) 2 835 (-48%) 11 675 (111%) 6 785 (22%) 3 135 (-43%)

cruise [54] 1 760 1 875 (6%) 1 230 (-30%) 1 230 (-30%) 5 855 (232%) 3 595 (104%) 1 965 (11%)

risingedgeretrigger [19] 285 300 (5%) 190 (-33%) 190 (-33%) 1 440 (405%) 820 (187%) 335 (17%)

chrono [20] 410 425 (3%) 305 (-25%) 305 (-25%) 2 490 (507%) 1 500 (265%) 670 (63%)

watchdog3 [26] 610 575 (-5%) 355 (-41%) 310 (-49%) 2 015 (230%) 1 135 (86%) 530 (-13%)

functionalchain [17] 11 550 13 535 (17%) 8 545 (-26%) 7 525 (-34%) 23 085 (99%) 14 280 (23%) 8 240 (-28%)

landing_gear [11] 9 660 8 475 (-12%) 5 880 (-39%) 5 810 (-39%) 25 470 (163%) 15 055 (55%) 8 025 (-16%)

minus [57] 890 900 (1%) 580 (-34%) 580 (-34%) 2 825 (217%) 1 620 (82%) 800 (-10%)

prodcell [32] 1 020 990 (-2%) 620 (-39%) 410 (-59%) 3 615 (254%) 2 050 (100%) 1 070 (4%)

ums_verif [57] 2 590 2 285 (-11%) 1 380 (-46%) 920 (-64%) 11 725 (352%) 6 730 (159%) 3 420 (32%)

Figure 12. WCET estimates in cycles [4] for step functions compiled for an armv7-a/vfpv3-d16 target with CompCert 2.6 (CC)
and GCC 4.4.8 -O1 without inlining (gcc) and with inlining (gcci). Percentages indicate the difference relative to the first column.

It performs loads and stores of volatile variables to model,
respectively, input consumption and output production. The
coinductive predicate presented in Section 1 is introduced to
relate the trace of these events to input and output streams.

Finally, we exploit an existing CompCert lemma to trans-
fer our results from the big-step model to the small-step one,
from whence they can be extended to the generated assembly
code to give the property stated at the beginning of the paper.
The transfer lemma requires showing that a program does not
diverge. This is possible because the body of the main loop
always produces observable events.

5. Experimental Results

Our prototype compiler, Vélus, generates code for the plat-
forms supported by CompCert (PowerPC, ARM, and x86).
The code can be executed in a ‘test mode’ that scanfs inputs
and printfs outputs using an alternative (unverified) entry
point. The verified integration of generated code into a com-
plete system where it would be triggered by interrupts and
interact with hardware is the subject of ongoing work.

As there is no standard benchmark suite for Lustre, we
adapted examples from the literature and the Lustre v4 distri-
bution [57]. The resulting test suite comprises 14 programs,
totaling about 160 nodes and 960 equations. We compared
the code generated by Vélus with that produced by the Hep-
tagon 1.03 [23] and Lustre v6 [35, 57] academic compilers.
For the example with the deepest nesting of clocks (3 levels),
both Heptagon and our prototype found the same optimal
schedule. Otherwise, we follow the approach of [23, §6.2]
and estimate the Worst-Case Execution Time (WCET) of
the generated code using the open-source OTAWA v5 frame-
work [4] with the ‘trivial’ script and default parameters.10 For
the targeted domain, an over-approximation to the WCET is

10 This configuration is quite pessimistic but suffices for the present analysis.

usually more valuable than raw performance numbers. We
compiled with CompCert 2.6 and GCC 4.8.4 (-O1) for the
arm-none-eabi target (armv7-a) with a hardware floating-
point unit (vfpv3-d16).

The results of our experiments are presented in Figure 12.
The first column shows the worst-case estimates in cycles for
the step functions produced by Vélus. These estimates com-
pare favorably with those for generation with either Heptagon
or Lustre v6 and then compilation with CompCert. Both Hep-
tagon and Lustre (automatically) re-normalize the code to
have one operator per equation, which can be costly for nested
conditional statements, whereas our prototype simply main-
tains the (manually) normalized form. This re-normalization
is unsurprising: both compilers must treat a richer input lan-
guage, including arrays and automata, and both expect the
generated code to be post-optimized by a C compiler. Com-
piling the generated code with GCC but still without any
inlining greatly reduces the estimated WCETs, and the Hep-
tagon code then outperforms the Vélus code. GCC applies ‘if-
conversions’ to exploit predicated ARM instructions which
avoids branching and thereby improves WCET estimates.
The estimated WCETs for the Lustre v6 generated code only
become competitive when inlining is enabled because Lus-
tre v6 implements operators, like pre and −>, using separate
functions. CompCert can perform inlining, but the default
heuristic has not yet been adapted for this particular case.
We note also that we use the modular compilation scheme
of Lustre v6, while the code generator also provides more
aggressive schemes like clock enumeration and automaton
minimization [29, 56].

Finally, we tested our prototype on a large industrial
application (≈6 000 nodes, ≈162 000 equations, ≈12 MB
source file without comments). The source code was already
normalized since it was generated with a graphical interface,
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but some other modifications were required. Most notably,
we had to remove constant lookup tables and replace calls
to special operators implemented in C/assembler with empty
nodes. Modeling and verifying these features is ongoing work.
Our prototype compiles the application to assembly code
in ≈1 min 40 s demonstrating that the performance of the
extracted compiler is adequate for real-world code.

These preliminary experiments show the practicability of
our approach in terms of compilation time and the efficiency
of the generated code.

6. Related Work

Related work falls into two interrelated categories: one fo-
cuses on modeling the semantics of languages inside an ITP
and the other on the correctness of compilation. We limit
our survey to work that focuses on the particularities of syn-
chronous languages, as we do, but proving the correctness of
general-purpose compilers is undeniably a related problem.

Several synchronous languages have been formalized in
ITPs, including a subset of Lustre in Coq using coinductive
types [21], an Esterel-like language in HOL with a focus on
program proof [62], a shallow embedding of Lucid Synchrone
in Coq with a focus on its higher-order features and clock
calculus [12], and a denotational semantics of Kahn networks
in Coq [51]. Similarly, work on synchronous compilers in
ITPs has remained close to the dataflow model: an unpub-
lished report [24] for a Scade 3 compiler focused on semantic
and clocking definitions; the Gene-Auto project showed the
correctness of equation scheduling for a Simulink to C code
generator [34]. None of this work treats the translation of
synchronous dataflow programs to imperative code, nor the
generation of executables.

Translation validation is an alternative to compiler veri-
fication. It was first applied to synchronous languages two
decades ago [52], more recently to a subset of Simulink and
its optimizing RTW compiler [60], and in ongoing work on
an existing Signal compiler [48, 49]. It is attractive because it
decouples compilation from proof—even if the former must
usually be adapted to provide hints for the latter—which
can be an important practical advantage. While translation
validation gives strong formal guarantees if the validator is
verified [40], this is not the case for the work cited here.

One motivation for verifying a Lustre compiler is to ensure
that properties verified on models also hold on generated
code. An alternative is to also compile the properties and to
reverify them at the code level [22]. This is an interesting
approach, but it has two disadvantages: the compilation of
properties and the re-verification must be trusted; verification
may succeed on the model but fail on the code.

7. Concluding Remarks

We present a formalization and proof of correctness in Coq
for a compiler that builds on CompCert to transform (nor-
malized) Lustre into assembly code. The proof establishes

that the dataflow semantics of source programs is correctly
implemented by the generated code.

The definitions of the dataflow and imperative languages,
and the translation function are adapted from previous
work [2, 3, 8]. The correctness proof of the SN-Lustre to
Obc translation is new. Several details of our formalization
contribute to this success, but the introduction of the interme-
diate semantic model is central. It divides the proof into two
more manageable parts and permits the statement and proof
of the correctness lemma. It is used only in the proof and
has no impact on compilation. The intermediate semantics
encompasses both the dataflow and imperative ones: eras-
ing memories gives the usual dataflow semantics; taking an
instantaneous snapshot gives the usual imperative one.

The inclusion of the fuse optimization is all but obliga-
tory in the clock-directed approach to compiling Lustre. Its
verification within Obc demonstrates two advantages of the
presented framework: properties of the source language and
translation function can be exploited to justify optimizations
on the imperative code; and the simple imperative language
is a useful setting both for implementation and verification
of optimizations. Expressing fuse, Fusible, and the proof
of fuse s ≈ s in Clight is surely possible but also surely more
demanding. Even as we progressively enrich our language
with types, operators, and external functions from Clight, we
do not expect the trade-off to change fundamentally.

In our implementation and verification of the translation of
SN-Lustre to Obc and of the optimization of Obc, we abstract
over the exact values, types, and operators used in programs.
This separation of concerns simplifies formalization and
proof, and, in principle, permits instantiations with different
host languages. We integrate elements of Clight into our
dataflow and intermediate languages and exploit CompCert
to generate assembly code and formally relate the behavior
of this code to the source dataflow model.

We describe a generation pass that transforms generic Obc
programs into Clight programs. The use of a small library of
separation assertions is decisive in expressing and reasoning
about the invariants needed to show correctness: namely that
the tree structures in the Obc semantics are correctly compiled
into nested records in Clight. It quarantines the problem of
reasoning about alignment and aliasing, and greatly simplifies
the correctness proof of the generation pass, which is already
challenging enough.
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